TA 625 U5 1912 UNITED STATES DEPARTMENT OF AGRICULTURE FOREST SERVICE HENRY S. GRAVES, FORESTER ### INSTRUCTIONS FOR MAKING FOREST SURVEYS AND MAPS 1912 Issued April 11, 1912. # U. S. DEPARTMENT OF AGRICULTURE, FOREST SERVICE. HENRY S. GRAVES, FORESTER. ## INSTRUCTIONS FOR MAKING FOREST SURVEYS AND MAPS. REVISED DECEMBER 15, 1911. 1912. PREPARED IN THE OFFICE OF GEOGRAPHY. WASHINGTON: GOVERNMENT PRINTING OFFICE, 1912. ### CONTENTS. | | Page. | |-----------------------------------|-------| | Elements of surveying and mapping | 5. | | Instruments used | 7 | | Forest Service standard compass | 9 | | The pocket compass | 14 | | Magnetic needle | 16 | | Variation | 16 | | Observing Polaris | 18 | | Observing the sun at noon | 21 | | Plane table | 23 | | Aneroid barometer | 28 | | Hypsometer | 29 | | Details of surveying | 31 | | Measurements | 31 | | Concerning accuracy | 31 | | Traverse | 32 | | Blazes and marks on trees | 41 | | Field notes, etc | 44 | | Elevation from vertical angles | 50 | | Tying in | 51 | | Ranger station surveys | 52 | | Forest homestead surveys | 58 | | Trail surveys | 59 | | Platting the surveys | 64 | | Map making in the field | 64 | | The Forest Atlas | 66 | | Conventional signs. | 69 | | Lettering | 70 | | Color prescriptions. | 73 | | Forest Atlas crayons. | 75 | | Mounting maps on muslin. | 76 | | | . 0 | | | Page. | |--------------------------------------|-------| | Determination of areas by planimeter | 78 | | Land Office surveys | 81 | | Resurveys | 83 | | Cancellation of misleading marks | 83 | | Physiographic features | | ### ILLUSTRATIONS. | | | | Page. | |------|-----|---|-------| | Fig. | 1. | Forest Service standard compass | 10 | | | 2. | Standard pocket compass | 15 | | | 3. | Lines of equal magnetic variation in the United | | | | | States | 17 | | | 4. | Positions of Polaris, Big Dipper, and Cassiopeia | 18 | | | 5. | Plane-table method in which the table is set up at all | | | | | the stations | 24 | | | 6. | Plane-table method in which the table is set up at | | | | | two stations and the remaining three are located | 1 | | | | by intersections | 25 | | | 7. | Plane-table method of locating points on both sides of | | | | | a base line which are to be occupied later and the | | | | | survey extended | 26 | | | 8. | Plane-table method of finding location from three | | | | | points | 27 | | | 9. | Method of sighting with standard hypsometer | 29 | | | | Areas of a section containing a compass error of 0.25°. | 32 | | | 11. | Ranger-station plat | 55 | | | | Standard planimeter | 78 | | | | Rectangular system of Land Office surveys | 81 | | | - | Names of physiographic features | 85 | | | 100 | | | #### INSTRUCTIONS FOR MAKING FOREST SURVEYS AND MAPS. #### ELEMENTS OF SURVEYING AND MAPPING. These simple instructions are issued to members of the Forest Service in order that forest surveys and maps may be as nearly uniform as practicable. They do not include directions for the use of instruments of great precision, and the tables are prepared only to such accuracy as is attained in careful timber cruising or in surveying with the magnetic compass. This is $\frac{1}{4}$ ° or 15′ of arc.¹ Forest surveys are made for two purposes—to locate and mark lines or boundaries upon the ground, or to furnish data for the preparation of maps. The correctness of a survey depends upon the excellence of the instruments in use and the skill of the surveyor and his party. A skillful surveyor can do better work with poor instruments than an unskilled or careless one with the best instruments. Small instrumental ¹ The "diurnal" or daily change of a magnetic needle, which is one of the variations for which allowance is made in precise surveying, amounts to 10' or 15', and the influence of magnetic storms upon the needle is frequently unsuspected at the time a survey is made. Clinometers and clinometer compasses, by which the degree of a slope or a vertical angle may be measured, are generally read only to the nearest $\frac{1}{2}$ ° or $\frac{1}{4}$ °. Members of the Forest Service who are using solars, transits, levels, etc., have received training and experience in the care and use of such instruments, and can execute the necessary surveys of precision. They are provided with advanced manuals of surveying and construction, tables, ephemerides, etc. errors usually balance themselves, and they are quickly discovered by the trained operator, who will know how to make allowance for them, if necessary. The unskilled or careless man will sometimes read the wrong end of the compass needle; read the graduated ring dial from the wrong direction; make a mistake in entering the reading in his notebook, or perpetrate some other palpable blunder which will throw doubt over the whole work and make a resurvey necessary. Certain fundamental principles underlie all surveys. We may assume a piece of land the location, extent, and contour of which are unknown. First of all the survey should determine its location, shape, and area, and if necessary its topography, and any other essential data. As in logic, one should start from something which is known to determine something which is unknown. The line which connects an unknown point with a known point is called a tie, and as soon as the tie is run the position of the unknown point is established. A line run around a tract of land is called a boundary line, and the angles on this line are called corners, stations, posts, or stakes, according to the local or established terms. It is not always necessary to run the boundaries of a tract to determine its position and area. A base line might be run across it with ordinates on either side extending to the limits of the tract. Or if the tract is a small watershed, lines might be traversed up all of the streams and drainage lines, or the area might be divided into squares and fractions of squares, similar to land-survey sections. Still another way will be described under the head of "Plane table." The method to be employed depends upon the purpose of the survey, but no matter what method is used, the survey will fail in its primary purpose if it does not show the location, position, form, and size of the tract surveyed. INSTRUMENTS USED. Three kinds of instruments are used in surveying, viz: For determining azimuth or horizontal angles; for determining grade or vertical angles; for determining distances. The horizontal deflection of a line is always expressed in degrees. The vertical deflection of a line is generally expressed in per cent. The length of a line in Government land surveying is always expressed in chains (66 feet). The altitude above sea level is expressed in feet. The principal instrument for determining azimuth is the magnetic compass, which, although of very simple construction, will be absolutely misleading to anyone who uses it without understanding. Suppose, for instance, a good compass, manufactured and adjusted in some eastern factory or in Europe, should be taken to the Pacific coast. It would undoubtedly indicate the direction of the magnetic currents at any time and place that it might be used, but its needle would not point north and south and probably would not hang level on the center pivot. The latter defect is quickly remedied by moving a little sliding weight, which should be on the south end of the needle. Sight compasses are constructed so that they may be sighted upon a distant object and the magnetic direction is determined by reading the degree indicated on the ring dial by the north end of the needle. Vernier compasses are provided with a revolving graduated ring dial which may be set according to the magnetic variation, thus reducing the reading to true north instead of magnetic north. Clinometer compasses are provided with a small pendulum hung from the center pivot, which is used to determine a vertical angle. Prismatic compasses are sight compasses with a "floating" dial which may be held in the hand. The sight is taken and the direction is read in the same operation. Mirror compasses are provided with a reflecting surface on the inside of a hinged cover, and the reflection of the reading is noted at the time the sight is taken. Alidade compasses are provided with at least one straight edge parallel to the line of sight. The bottom of the compass is smooth so that the instrument may be laid upon a map and the straight edge used as a ruler. Solar compasses are provided with a special attachment which can be revolved independent of the compass for taking observations on the sun and determining the cardinal direction without using the compass needle. Compasses are also used as a part of the equipment of transits, levels, and plane tables, and in such cases these instruments should be constructed of nonmagnetic materials, in order that the needle may not be deflected. Iron, nickel, cobalt, and manganese are the most magnetic substances. The instruments for determining grade or vertical angles are: The grademeter; The Locke hand level; and The Abney reflecting level, which is provided with a vertical arc, graduated either to per cent, degrees, or ratio of slope, according to the purpose for which it is used. The unit of land measure is the standard surveyor's chain of 66 feet. For some classes of work steel band chains or steel tapes are found more convenient and economical, because they are lighter and greater lengths can be dragged over the ground, thus effecting a saving in pinning and tallying. Tapes are usually graduated in feet, and when they are used it is necessary to reduce the measurements to standard chains, in order that they may conform with the official land surveys. In some regions the best means for determining distances are the stadia transit and rod. These instruments are used by specially trained men, and are therefore not described here. #### FOREST SERVICE STANDARD COMPASS. Figure 1 shows the surveying compass
which has been adopted by the Forest Service for the use of field men in making forest surveys and maps. Very accurate work can be done with this instrument if properly used, and for this reason requisitions for transits should not be made unless there is a special need for using a still higher grade instrument. The principal features of this standard compass are as follows: The sights are very tall, and therefore admit of use on steep hillsides or in taking observations on Polaris. The hair sight may be repaired easily by threading through the holes at A and B. If after long use the sights work too freely they may be tightened by the nut C. Fig. 1.—Forest Service standard compass. · The base of the instrument is an accurate square, beveled and graduated as a protractor on two sides and to inch scales on two sides. One of these scales is Forest Atlas standard of 1 inch to 1 mile, and is divided into eighths, each of which represents 10 chains. The other scale is decimal. The base supports two levels, D, set at right angles to each other, each being adjustable by means of small screws and a center point on which they rock. The clamp E is a milled nut which operates to lift the needle from the center pin when the compass is not in use. It works so easily on a screw that the azimuth of the instrument need not be disturbed when the needle is unclamped or clamped. The thread is riveted on the top so that the nut will not come off and be lost. The needle F is of blue steel and is provided on its south end with a small brass weight, which may be pushed toward or away from the center if it becomes necessary to make the needle hang horizontal and counteract the magnetic dip in any locality. Of course the needle should be removed from the center pivot when this is done. The base dial is reenforced at H to hold the center pivot more securely. It is engraved to show (1) the cardinals, (2) a half circle of degrees for the clinometer, and (3) 70° of variation, including east and west. The ring dial I is graduated to degrees reading from zero°, from north and south, to 90° at east and west. It carriers a vernier, J, which reads against the variation graduation on the base dial. The cover is of heavy plate glass and is held in place by a graduated and slotted rim, K, which also revolves in azimuth. The clinometer consists of a weighted pendulum, L, which hangs on the center pivots and is provided with a pointer which reads against a graduation on the base dial. The edges M and N are perpendicular to each other, and the line O P is parallel to the line of sight and may, therefore, be used as an alidade. The above description covers that portion of the instrument which is used upon a plane table either for ordinary compass work or for mapping on the planetable sheet. The instrument is, however, provided with a ball-and-socket attachment so that it may be used upon a Jacob staff, tripod, or more conveniently held in the hand if used as a hand compass for rough cruising. These parts are shown in the illustration; Q, a cone-bearing containing the spindle, which may be clamped by the screw R; the ball S is held by the socket cover T, which screws upon the mounting U. When this instrument is used on the plane table the proceeding is as follows: The sights having been raised and the instrument laid on the table, the table is leveled by observing the bubbles. The variation having been set off, the table is oriented with the compass needle, which should read zero at the north end. Then sights may be taken upon all the objects to be mapped, using the edge OP, or the opposite parallel edge, as an alidade. The distances may be measured with the scale. When used as a surveyor's compass the leveling is done by means of the ball and socket S and T, and the compass is revolved in azimuth by loosening the clamp screw R. As a clinometer for measuring vertical angles, the edge M may be laid upon a slope and the pendulum will show the number of degrees of dip or rise. This is not the same as "per cent of grade." The difference is shown on page 40. Another method is to lay the edge M on the level plane-table board and, revolving the rim vertically, take a sight through the slots K. The angle of dip or rise may then be very closely approximated by reading the graduation on the rim. In some of these instruments the cover of the socket, at the ball joint, is cut away on one side, permitting the spindle to be tipped over and the compass revolved in a vertical plane. The sights may then be used in connection with the clinometer. This altered socket will be issued when specially requisitioned. Right angles may be turned accurately without the use of the compass by two methods: (1) By drawing a line on the plane-table sheet on the edges OP and then turning the instrument 90° until the edge M coincides with the line, or (2) the slots K may be used without moving the instrument, as they are placed exactly 90° apart. This instrument should give good results if used and treated with the care which is necessary for any well-made and carefully adjusted instrument. The custodian should keep it clean, but should not oil it, though it may be wiped occasionally with a slightly greasy piece of muslin. The needle should always be clamped when not in use, and the hair sight should always be closed down first so that it will be protected by the slot sight. The cover glass may be removed by taking off the sights and then the surrounding rim, which is provided with small brass screws which travel in a channel cut into the outside of the compass box. It is not necessary to remove the glass in order to sharpen the center pivot. This may be done by unscrewing it from the under side of the compass after the needle has been clamped, although this must be done very carefully, so that the clinometer pendulum will not move out of place; otherwise it will be necessary to remove the cover glass. In case of any serious injury to any instrument, it should be returned to the property clerk at Ogden for repairs. The instrument should not be kept near large bodies of iron, nor exposed to electric motors or generators. Compass needles are frequently demagnetized by being carried in a valise in an electric car and being set down over a powerful motor, because the needle is clamped (as it should be) while being carried. On the other hand, the magnetism of a needle may be strengthened by laying the compass, with the needle unclamped, near a direct-current motor or generator or strong magnet. A better plan is to unclamp the needle, and after it has found its bearing, to clamp it and leave it to the influence of the magnetic current. In this way the continued quiver of the needle will not dull the center pivot. Do not allow the needle to be deflected, while being read, by an ax, jackknife, pencil tip, the metal band of a hat, or other metal. #### THE POCKET COMPASS. The Forest Service standard pocket compass is a strong and serviceable instrument for cruising or retracing survey lines. Instructions for its proper use are engraved upon the base dial, as shown in figure 2. Fig. 2.—Standard pocket compass. #### MAGNETIC NEEDLE. It is unfortunate that all makers of surveying instruments do not have a uniform method of designating the north or south end of compass needles, but that the surveyor must learn and remember whether the blue or white, or the weighted or cross-barred end of the needle is the one which points northward. Some small compasses also differ in the positions of the E. and W. according to the use which is to be made of them. If they are to be used as sight compasses, they should have the E. on the left side of the dial. In good weather, when the sun shines or where distant features of the landscape are in constant view, there is little chance of error by reading the wrong end of the needle, but there are many conditions under which the compass alone must be the guide. #### VARIATION. It will be seen by the map (fig. 3) that only along one line in the United States, the so-called "line of no variation," does the needle point due north. This line is not stationary, but has a slow movement westward. At all other points in the United States the north end of the needle is deflected toward the "line of no variation." In the North Atlantic States the variation of the north end of the needle is to the west, and a surveyor at Augusta, Me., would enter in his field notes "variation 16° west." At Portland, Oreg., the entry would be "variation 21½° east." The maximum annual change of variation in the United States is only about 5 minutes. On the Pacific coast it is only 1 minute. East of West of the heavy line the variation is east of true north. the heavy line the variation is west of true north. Fig. 3.-Lines of equal magnetic variation in the United States. If a survey is to be made in a region which has not been subdivided by Government land surveys or where the variation of the needle is not known, then the sur- Fig. 4.—Position of the Big Dipper and Cassiopeia when Polaris is due north. If the figure is held upside down it shows the reverse position in which Polaris is also due north. veyor must do one of three things. He should if possible find the variation by observing the Pole Star, of which approximate bearings are given (Table 1) at 9 p. m. during the year; or he may obtain the true meridian by observing the sun at apparent noon. If neither can be done, a variation may be assumed after examination of figure 3, and this assumed variation should be entered in the field notes and shown on the map, with the date when the map is prepared. #### OBSERVING POLARIS. The Pole Star is not exactly above the North Pole of the earth, but its bearing is due north twice a day, and an observation of it at one of these times will give a true meridian. Mizar, a double star in the bend of the handle of the Big Dipper is either above or below the Pole Star at these times. The
same is true of the star δ (Delta) in the constellation Cassiopeia. (See fig. 4.) At all other hours the Pole Star has a bearing either east or west of true north. It is most convenient to take a sight on Polaris at 9 p. m., and for this reason the accompanying table was prepared. The sight having been taken, it will be easy to turn the compass to true north and ascertain the variation. TABLE 1.—Bearing of Polaris, east or west of true north, at 9 p. m. at different latitudes in the United States for the years 1912, 1913, 1914. | 1 | 7. | | | |-----------|--------|---|---| | | 48°. | . Tarkanananaranananananananananananananana | North. | | | / 46°. | A A | E. E. | | | 44°. | | ≥°° E. | | | 42°. | * ************************************ | Po E. | | | 40°. | × × × × × × × × × × × × × × × × × × × | ************************************** | | o) | 38°. | | - 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | Latitude. | 36°. | # 14-14-14-14-14-14-14-14-14-14-14-14-14-1 | 1
************************************ | | | 34°. | wa tatanintana waya yana tatanintana | 1
40 E. | | | 32°. | | Letter E. W. | | | 30°. | # # 14-14-14-14 - 1-12-14 - 1-14-14-14-14-14-14-14-14-14-14-14-14-14 | Los E. | | | 28°. | * X X X X X X X X X X X X X X X X X X X | Legister E. W. | | | 26°. | 1.151.151.151.151.1 | North | | Total C | - Dane | Jan. 15 Feb. 15 Mar. 15 May. 15 May 15 June 15 July 15 Sept. 15 Oct. 15 | Nov. 15
Dec. 15 | ### OBTAINING A TRUE MERIDIAN BY OBSERVING THE SUN AT APPARENT NOON. In addition to the instructions given on pages 16 to 19, there is a method of obtaining a true meridian by observing the sun with a sight compass at the exact time it is due south. The time of this southing is called apparent noon and changes from day to day. It is not the same as local mean noon, nor standard time noon. It is best to set your watch for local mean time, since you can then observe a southing at the time given in Table 2. If your watch is set for standard time, it will be necessary to set it ahead or back by adding or subtracting a correction, according as the longitude of your station is either east or west of one of the standard meridians. These are: Local mean time at— Longitude 75°=Eastern standard time. Longitude 90°=Central standard time. Longitude 105°=Mountain standard time. Longitude 120°=Pacific standard time. The correction for a degree of longitude is 4 minutes of time; the correction for a minute of longitude is 4 seconds of time. To illustrate: The local mean time in longitude 108° will evidently be 12 minutes behind Mountain standard time, or 48 minutes ahead of Pacific standard time. The local mean time in longitude 114° 35′ will be 21 minutes and 40 seconds ahead of Pacific standard time. The method is: Pacific standard time is for longitude 120° 00′ Local mean time is required for longitude 114° 35′ Then 5° 25′ Multiplied by 4 4 Gives 20 m. 100 s., or 21 m. 40 s. The watch must be Showing the hour, minute, and second at which the sun will bear exactly south. set to local mean time (not standard, nor sidereal, nor sun time) TABLE 2. TABLE 2a.—Showing the hour, minute, and second at which the sun will bear exactly south. The watch must be set to local mean time (not standard, nor sidereal, nor sun time). | FOR THE YEAR 1913 IN THE WESTERN UNITED STATES. | Dec. | ### 1111111111111111111111111111111111 | |---|------------------|---| | | Nov. | HIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII | | | Oet. | 五日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日 | | | Sept. | H | | | Aug. | ###################################### | | | July. | ### ### ### ### ### ### ### ### ### ## | | | June. | HITTELLITTITTTTTTTTTTTTTTTTTTTTTTTTTTTTT | | | May. | H. 111111111111111111111111111111111111 | | | Apr. | H. 12333333333333333333333333333333333333 | | | Mar. | H H H H H H H H H H H H H H H H H H H | | | Feb. | H H H H H H H H H H H H H H H H H H H | | | Jan. | H | | | Day of
month. | -0.84001888888888888888888888888888888888 | (Insert these tables in the "Instructions for Making Forest Surveys and Maps," 1912, page 22.) Table 26.—Showing the hour, minute, and second at which the sun will bear exactly south. The watch must be set to local mean time (not standard, nor sidereal, nor sun time). | FOR THE YEAR 1914 IN THE WESTERN UNITED STATES. | Dec. | H. C. | |---|---------------|---| | | Nov. | ### ################################## | | | Oet. | H. m. s. | | | Sept. | H. 1920. 3. 8. 1920. 3. | | | Aug. | E 25 25 25 25 25 25 25 25 25 25 25 25 25 | | | July. | H | | | June. | H. C. | | | May. | H. H | | | Apr. | 72222222222222222222222222222222222222 | | | Mar. | 6 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | | | Feb. | 12000000000000000000000000000000000000 | | | Jan. | H. H | | | Day of month. | -14%4rorxocida4755755844884888888 | #### PLANE TABLE. For making any map the plane table is the best instrument in use. Instead of taking notes, as in running compass lines, the surveyor plats his work in the field and can thus always see the progress made. Errors and omissions are discovered quickly and rectified. The paper upon which the map is to be made is fastened to the plane-table board by thumb tacks, and upon it rests the alidade, a straightedge or ruler with folding sights like a compass. From a point on the paper which represents the starting point on the ground over which the table is standing the surveyor draws lines on the paper with the alidade to the various topographic features which are to be mapped. From start to finish of the survey it must at all stations retain the same orientation—that is to say, at every station where the table is set up its sides must be exactly parallel to its position at the original
station. There are several methods, all based upon the same principles. If an isolated block of forest is to be bounded by a survey, the method would be: Set up at A with one side of the table bearing approximately north and south. As A is near the southeast corner of the tract, begin to draw at the corresponding place on the paper. With the alidade draw a line from A toward B. Measure the distance AB on the ground and scale the proportionate distance on the paper. Set the table at B. With the alidade on the drawn line take a backsight on A. The table will then be oriented or parallel to its position when at A. Draw a line on the paper from B toward C. Measure it and scale on the map. Proceed as before, and the result will be a map which will truly represent the lines on the ground. (See fig. 5.) In this case the points C and D were not visible from A, but if, instead of being a block of forest, the area were an open meadow, then a second method would be used. Fig. 5.—Plane-table method in which the table is set up at all the stations. Set up at A. Draw lines to B, C, D, and E. Measure AB. Set up at B. Orient on A. Draw lines to C, D, and E. The intersections of the line will give the other three points. The line AB is a base line. (See fig. 6.) The third method is an extension of the second and involves some near-by points which can not be located from the base line. From A and B the points C, D, E, and F are intersected, and one sight is taken on G, which is obviously too nearly in line with the base line to be accurately intersected. Subsequently the table is set up at C and oriented by taking sights on A, B, D, E, and F. It is then easy to intersect G, and also get Fig. 6.—Plane-table method in which the table is set up at two stations and the remaining three are located by intersections. a sight on H, which was not visible before. H may be intersected from G. (See fig. 7.) A fourth method is employed when the table must be set up at an unknown point from which three or more known points are visible. This is the "threepoint problem," in which the suveyor "picks up" his location. Suppose that C, D, and E were located by the third method and are high and well-defined peaks. They form a triangle which can be accurately platted on the paper, and the best plan is to prick in the points with a fine needle. The surveyor will then proceed Fig. 7.—Plane-table method of locating points on both sides of a base line which are to be occupied later and the survey extended. by setting up the table at the point which is to be located and from which he can see the three peaks. Orient approximately by compass. With the alidade draw lines from each peak toward the point of set-up. If the three lines intersect, the desired point is located, except as noted below. If the lines do not intersect, the orientation may be changed until they do, but an easier plan is to fasten a piece of tracing cloth on the table and assume a point from which the lines may be drawn toward the peaks. The tracing may then be shifted over the paper to find a position at which the lines will Fig. 8.—Plane-table method of finding location from three points. exactly cover the three needle holes on the paper. This method is reliable when the desired location is within the triangle, but it is useless when the table is set up on or near a circle which would pass through the three peaks. For this reason four or more points should be used if possible. (See fig. 8.) #### ANEROID BAROMETER. The pocket aneroid barometer is not a very accurate instrument, but satisfactory results may generally be obtained by using the following method: Two aneroids are necessary. Both should be compared and set at some established elevation, such as a bench mark of the Geological Survey or at a railway station. Any necessary correction may be made by sliding the rim or by means of the small screw on the back of the barometer, which will move the hand to the proper reading. After arriving at the camp from which the survey is to be made both aneroids should be read and the readings entered in the notes. One aneroid should be kept in camp while the other is used in the field, and they should be compared twice a day, say, at 7 a. m. and 7 p. m. The camp barometer will then show the change in atmospheric pressure from time to time during the survey, and the difference between the two, when the field barometer is being used at a distance, will give the difference in elevation between the camp and the point where the field barometer was read. If the two barometers agree in the morning and do not agree at evening the difference, if material, may be proportioned during the day's notes, assuming the camp barometer to be correct. The scale of "mercury inches." generally graduated on aneroids, is not to be used. If a barometer gets out of order or does not give satisfaction, it should be returned to the property clerk. Do not attempt to repair it nor oil any of its parts. ## METHOD OF USING THE FOREST SERVICE STANDARD HYPSOMETER AND GRADEMETER. Stand 100 feet from the base of the tree which is to be measured. The observer inserts the fingers of his left hand into the loop of leather straps attached to the back of the hypsometer, with both straps inside of the hand and the instrument on the back of the fingers. Closing the hand enables him to grasp the straps firmly. The thumb is in such a position as readily to press down the small brass knob which releases the circular pendulum on the inside of case. By an easy motion of the elbow, the small peephole is Fig. 9.—Method of sighting with standard hypsometer. brought close to the eye of the observer. The square window, directly opposite the peephole, is pointed toward the object whose height is to be determined. The light enters from the large window on the face of instrument. With the thumb pressing the release, the sight is taken on the object and the height is read at the same time; or the thumb may be lifted, and the pendulum thus being clamped, the height of the tree may be read through the window. If the observer stands only 50 feet from the tree the reading must be divided by 2. If he stands 200 feet away it must be multiplied by 2, and proportionately for other distances. The reading gives the height above the level of the eye. Allowance must be made if the observer's eye is above or below the stump height of the tree. The notebook and pencil are held in the right hand while an observation is being taken, and the notebook is passed to the left hand when the observation is entered. The hypsometer being on the back of the fingers allows free play for the thumb, palm, and ends of the fingers of the left hand to hold the notebook. In moving from station to station the right hand is then free to assist in getting through the brush or in crossing logs. The circular pendulum is graduated to tangents. Therefore it may be used to determine the per cent of grade of a road or trail. For this purpose sights may be taken downhill as well as uphill. No conversion of figures is necessary. If the reading is 10 the grade is 10 per cent. It will not hereafter be necessary to use pocket levels for this class of work, since the hypsometer-grademeter answers every purpose. # DETAILS OF SURVEYING. #### MEASUREMENTS. The most frequent source of error in pacing, chaining, or steel taping is in counting the tallies—assuming that the mechanical part of the work is well done. The memory should not be trusted. The only safe plan is to enter each tally in the field notes as soon as that tally is completed and the pins or stakes have been counted by both chainmen and before the next tally is begun. When timber is being estimated along the survey line this error is not likely to occur, as the numbers on the timber sheets are a check upon the work. If a pair of amateur chainmen went over some open level country and reported a distance of 174.62 chains, an error, if one existed, would probably be found in the "tens" or tallies, and a resurvey would give 164.62 or 184.62 chains. The standard chain has a length of 66 feet. If any other unit of linear measure is used, it must be made clear in the notes. For some classes of work steel tapes or "band chains" are preferable, because, being lighter, they can be longer and stretched straighter than chains. # CONCERNING ACCURACY. The field work of the Forest Service extends over millions of acres of wild, very rough, and frequently almost inaccessible lands. In the surveying and mapping of such lands, it should be understood that the term "accuracy" does not call for the degree of precision which would be applied to city lots having a value of \$1,000 per square foot. The surveys of the Forest Service call for *practical accuracy*, rather than technical correctness or precision. Figure 10 shows the changing areas in the survey of a square mile in which there is a compass error of one-fourth degree. When measurements close, but not at right angles, the result is a diamond, and the loss in area is about 0.02 of an acre, representing a value of only 5 or 10 cents. In a converging section the loss may be 2.80 Fig. 10.—Areas of a section containing a compass error of 0.25 degree. acres, but in either instance such a survey is considered to inclose a conventional section of 640 acres, and this will also be the case if there is an excess acreage to the same extent. To survey a perfect square would be very expensive and not justifiable in view of the trifling values involved. # TRAVERSE. When a survey is run along a road or stream, or follows the crest of a divide, the line "meanders" and consists of a number of short courses and distances. The courses are read from the north end of the needle and platted on the map with a protractor. Whenever the actual change in latitude or departure (longitude) is desired, it may be computed with the traverse table. In platting with the protractor care should be used that all the angles are set
off from the same meridian, otherwise the errors will accumulate. The angles of all courses in surveying are measured from the north and south cardinals toward the east or west, and they should be platted the same. The figures on some protractors are misleading in this respect. 23682°-12-3 Table 3.—Traverse. | 50 | ~ | 1 | Dist | . 1. | Dis | t. 2. | Dis | t. 3. | Dis | t. 4. | Dis | t. 5. | | |--|-------|-----|------|--------|--------|----------|--------|--------|--------|--------|---------|-------|--------| | 0 15 | Cours | se. | Lat. | Dep. | | | Section Sect | 0 | 1 | | | | The said | 18 10 | - | | | | | 0 / | | 1 | 0 | | | 0.0044 | 2.0000 | 0.0087 | 3.0000 | 0.0131 | 4.0000 | 0.0175 | 5.0000 | | 89 45 | | 1 0 9998 0175 9997 0349 9995 0524 9994 0698 9992 0873 898 130 9998 0298 1995 0364 9990 0873 9988 1091 30 9995 0364 9999 0873 9988 1091 345 9995 0364 9990 0878 9986 1047 9983 1309 3654 146 9996 0878 9986 1047 9986 1570 9961 1369 9962 1745 9962 1570 9961 1745 88 0 9969 1570 9990 0436 9981 0872 9971 1309 9962 1745 9962 1228 9972 1476 9988 0568 9985 0878 9977 1747 9986 1570 9961 1745 88 0 9986 0573 9988 0688 9985 1047 9976 1396 9970 1745 88 0 9986 0573 9986 0572 9971 1309 9962 1745 99962 2181 30 9986 0523 9973 1047 9959 1570 9968 1570 9961 1949 1042 0 2399 12617 9986 0579 9981 0610 9963 1221 9944 1831 9952 2248 9997 3052 2481 9979 0654 9957 1308 9962 1701 9936 2268 9920 2855 45 9979 0654 9957 1308 9936 1902 9914 2616 9833 2570 15 9973 0741 9945 1482 9918 2223 9980 2544 9967 3052 998 1060 9908 0755 9938 1569 9908 2234 9890 2864 8863 3370 45 15 09962 0872 9924 1743 9886 2615 9898 2344 9863 3312 9828 4140 15 15 09958 0051 1,9916 0,1830 2,9874 0,2745 8,9825 0,3660 4,970 0,476 24 16 16 16 16 16 16 16 16 16 16 16 16 16 | | | | | | | | | | | | | | | 15 | | | | | | | | | | | | | | | 190 | 1 | | | | | | | | | | | | | | 45 9994 0395 9981 0611 9986 0916 988] 1222 9977 1575 88 0 15 9994 0349 9988 0988 9982 1047 9976 1396 9970 1745 88 0 15 9992 0393 9985 0785 9977 1178 9969 1570 9961 1963 45 30 9986 0523 9973 1047 9959 1570 9945 2938 9931 2617 87 31 9986 0523 9973 1047 9959 1570 9945 2938 9931 2617 87 32 9984 0567 9988 1134 9952 1701 9936 2268 9990 2855 35 30 9981 0610 9963 1221 9944 1831 9925 2442 9907 3052 306 45 9979 0554 9957 1308 9936 1902 9914 2616 9893 3270 155 9979 0554 9957 1308 9936 1902 9914 2616 9893 3270 155 9978 1482 9918 2223 9990 2944 9863 3705 45 9966 0828 9931 1656 9998 2354 9877 3138 9863 3270 15 0.9958 0.0915 1.9916 0.1830 2987 2484 9863 3312 9828 4140 150 0.9958 0.0915 1.9916 0.1830 2.9874 0.2745 3.9832 0.3806 4.9790 0.4575 45 9950 1002 9899 2004 9849 3006 9799 4008 9748 5009 1002 9899 2004 9849 3006 9794 4008 9748 5009 1002 9899 2004 9849 3006 9794 4008 9748 5009 155 9931 1175 9861 2351 9792 3526 9723 4701 9955 1439 9870 445 9950 1002 9899 2004 9849 3006 9794 4008 9748 5009 155 9908 1179 9862 2875 9816 3834 9770 4792 30 30 9936 1032 9871 2874 9850 3136 9781 4181 9726 5226 84 0 30 9936 1032 9871 2874 9850 3136 9781 4181 9726 5226 84 0 30 9909 1175 9802 2875 9816 3834 9770 4792 30 30 9936 1032 9871 2874 9850 316 9702 4875 9931 1175 9861 2351 9792 3526 9723 4701 9653 5877 15 9921 1219 9851 2437 9776 3566 9702 4875 9679 5660 30 9900 1478 9780 2925 1219 9840 2354 9870 3369 9734 4528 9679 5660 30 9900 1478 9780 2920 1224 9840 2354 9865 30 9908 1478 9780 2449 9851 3451 59870 4945 1481 9776 5856 586 9931 1175 9861 2351 9792 3526 9703 4805 5877 315 9900 1478 9780 2920 1204 9840 306 9799 4008 9748 5009 1546 9800 2014 9846 30 9806 1478 9780 2876 9808 1819 9770 4792 350 9808 1478 9950 1478 9850 1481 9870 1481 9776 5860 30 9806 1478 9780 2444 9850 30 9806 1478 9780 2444 9850 30 9806 1478 9780 2444 9850 30 9806 1478 9780 2444 9850 30 9806 1478 9780 2444 9850 30 9808 30 980 | | | | | | | | | | | | | | | 2 0 9994 0349 9988 0698 9982 1047 9976 1396 9970 1745 88 0 15 9992 0393 9985 0785 9977 1178 9966 1570 9961 1593 45 0.9988 0.0480 1.9977 0.0960 2.9965 0.1439 3.9954 0.1919 4.942 0.2399 31 15 9984 0567 9968 1134 9962 1701 9936 2268 9920 2835 30 9981 0610 9963 1221 9944 1831 9925 2412 9997 3052 30 45 9976 0654 9957 1308 9936 1902 9914 2616 9893 3270 3270 3270 3270 3270 3270 3270 327 | | | | | | | | | | | | | | | 15 9992 0393 9985 0785 9977 1178 9969 1570 9961 1963 45 0.9880 0.480 1.9977 0.0902 0.9965 0.1439 3.9954 0.1919 4.9942 0.2399 30 0.9986 0.523 9973 1047 9959 1570 9945 2.298 9931 2617 87 30 9986 0.523 9973 1047 9959 1570 9945 2.298 9930 2835 30 9981 0.610 9963 1221 9944 1831 9925 2442 9907 3052 30 3981 0.610 9963 1231 9936 1902 9914 2.616 8983 3270 30 40 9976 0.6654 9957 1308 9936 1902 9914 2.616 8983 3270 30 3967 0.744 9945 1482 9918 2223 9900 2964 9863 3705 40 40 9976 0.688 9938 1569 9908 2354 9877 3138 9866 3923 3705 45 9966 0.828 9931 1656 8987 2444 9863 3312 9828 4140 315 30 9966 0.828 9931 1656 8987 2444 9863 3312 9828 4140 315 30 9954 0.958 9908 1917 9862 2875 9816 3834 9770 4782 30 9954 0.958 9908 1917 9862 2875 9816 3834 9770 4782 30 9954 0.958 9908 1917 9862 2875 9816 3834 9770 4782 30 9961 0.183 9890 0.919 9836 3136 9714 4181 9726 5226 840 30 9909 1002 9899 2004 9849 3006 9799 4008 9748 5009 45 45 9931 1175 9861 2351 9792 3526 9723 4701 9653 5877 4782 30 9936 1032 9871 2264 9807 3369 9743 4528 9679 5660 30 45 9931 1175 9861 2351 9792 3526 9723 4701 9653 5877 4782 30 9900 1262 9840 2354 9760 3786 9680 5448 9600 6310 45 9900 1478 9790 2766 9670 4434 9561 5221 9767 6326 30 9800 1478 9780 2956 9670 4434 9561 5221 9752 6326 30 9863 1650 9726 3301 9858 4551 9792 3566 9702 4875 9627 6038 3675 455 9884 1521 9767 3044 9561 5988 4987 1488 979 9884 521 9767 3044 9560 9381 4885 9988 171 1887 9886 5670 9484 5696 9383 9790 9484 5685 96 | 2 | | | | | | | | | | | | | | 30 | | | | | | | | | | | | | | | 45 0. 9986 0.0480 1. 9977 0. 0960 2. 9965 0. 1439 3. 9954 0. 1919 4. 9942 0. 2399 15 0. 1986 0.0523 9973 1077 9958 1570 9945 2093 9931 2017 87 0. 0958 0. 1047 9955 1570 9945 2093 9931 2017 87 0. 0958 0. 0953 1221 9944 1831 9925 2442 9907 3032 3032 40 0. 9976 0.068 9957 1308 9936 1902 9914 2616 9893 3270 15 9976 0.068 9957 1308 9936 1902 9914 2616 9893 3270 15 9973 0741 9945 1482 9918 2223 9890 2964 9863 3705 45 300 9969 0.785 9938 1569 9908 2534 9867 31318 9868 3923 45 9966 0.828 9931 1656 9897 2484 9863 3312 9828 4140 15 0. 9962 0.872 9924 1743 9880 2615 9848 3486 9819 4338 85 0. 0960 0.021 9. 9960 0.021 9879 9908 2575 9816 3834 9770 4792 30 0. 0958 0.0915 1. 9916 0. 1830 2. 9874 0. 2745 3. 9832 0. 3660 4. 9790 0. 4575 45 30 9954 0.058 9908 1917 9862 2875 9816 3834 9770 4792 30 0. 0958 0. 0915 1. 9916 0. 1830 2. 9874 0. 2745 3. 9832 0. 3660 4. 9790 0. 4575 45 30 9954 0.058 9908 1917 9862 2875 9816 3834 9770 4792 30 0. 0958 0. 0915 1. 9916 0. 1830 2. 9874 0. 2745 3. 9832 0. 3660 4. 9790 0. 4575 45 30 9954 0.058 9908 1917 9862 2875 9816 3834 9770 4792 30 0. 0945 1045 9800 2001 9. 8363 136 9781 4181 9726 5226 84 0. 0945 1045 9800 2001 9. 8363 136 9781 4181 9726 5226 84 0. 0945 1045 9800 2001 9. 8363 1369 9781 4181 9726 5226 84 0. 0931 1175 9861 2351 9792 3260 9723 4701 9653 5877 15 99920 1262 9840 2354 9760 3786 9808 5048 960 631 36 0. 9903 1349 1. 9817 0. 2697 2. 9726 0. 4046 3. 9635 0. 5394 4. 9543 0. 9909 0.1349 1. 9817 0. 2697 2. 9726 0. 4046 3. 9635 0. 5394 4. 9543 0. 9909 1. 9816 1. 9805 0. 9809 1. 9816 1. 9817 0. 2697 2. 9726 0. 4046 3. 9635 0. 5394 4. 9543 0. 9636 1. 9817 0. 9817 0. 9817 0. 9818 0. 9803 1. 132 9805 2. 9830 9. 9830 9. 9834 9. 98 | | | | | | | | | | | | | | | 3 0 9984 0567 9968
1134 9952 1701 9936 2938 9931 2617 87 45 9936 2936 8920 2836 30 9981 0610 9963 1221 9944 1831 9925 2442 9907 3052 30 9981 45 9979 0654 9957 1308 9936 1962 9914 2616 9893 3270 155 9973 0741 9945 1482 9918 2223 9890 2964 9863 3705 155 9973 0741 9945 1482 9918 2223 9890 2964 9863 3705 45 9996 0785 9938 15660 9908 2354 9877 3138 9846 3923 30 9969 0785 9938 15660 9908 2354 9877 3138 9846 3923 30 9969 0785 9938 15660 9908 2354 9877 3138 9846 3923 30 9950 0902 0872 9924 1743 9886 2615 9348 9863 3312 9828 4140 15 0.958 0.9915 1.9916 0.1830 2.9874 0.2745 3.9822 0.3660 4.9790 0.4575 30 9954 0958 1917 9862 2875 9818 3846 9819 4358 85 0 15 0.9958 0.0915 1.9916 0.1830 2.9874 0.2745 3.9822 0.3660 4.9790 0.4575 30 9954 0958 9908 1917 9862 2875 9816 3834 9770 4792 30 9954 0958 9980 2991 9836 3136 9781 4181 9726 5226 84 0 15 9941 1089 9881 2177 9822 3266 9792 4875 9703 5443 45 30 9936 1132 9871 2264 9807 3366 9789 4008 9789 5009 15 9941 1089 9881 2177 9822 3266 9762 4355 9703 5443 45 30 9936 1132 9871 2264 9807 3366 9783 4528 9079 5660 30 9936 1132 9871 2264 9807 3366 9783 4528 9079 5660 30 9936 1132 9871 2264 9807 3366 9783 4528 9079 5660 30 9914 1305 9829 2611 9743 3916 9658 5241 975 660 30 9914 1305 9829 2611 9743 3916 9658 5241 9872 6606 30 9930 1379 9802 2911 9743 3916 9658 5241 9872 6526 30 9900 1349 1.9817 0.2697 2.9726 0.4046 3.9635 0.5394 4.9543 (0.6743 80 9804 1279 9807 1307 9829 2570 9690 4305 9586 5740 9483 7175 486 9804 1308 9803 1478 9730 2870 4040 3.9653 5740 9483 7175 30 9803 1478 9790 2956 9670 4434 9595 1951 9572 6526 30 15 9870 1607 9740 3357 9427 5560 9898 4878 880 9909 1836 150 9726 3301 9589 4951 9451 5099 980 1478 9790 2956 9670 4434 9595 9889 1847 9590 9881 175 9890 1948 9598 1338 9598 9598 1941 9451 6002 9418 8009 981 15 9606 9838 1360 9726 3301 9589 9491 9451 6002 9418 8009 950 1478 9709 9409 9409 9508 3371 9474 5209 9486 8462 9498 9488 1736 9989 8487 8802 0000 9799 9409 9598 9471 9586 9489 9490 9488 9499 9490 94908 9489 9490 9490 | | | | | 1.9977 | 0.0960 | 2.9965 | 0.1439 | 3.9954 | 0.1919 | 4.9942 | | 15 | | 30 99S1 0610 99G3 1221 9944 1831 9925 2442 9907 3052 356 4 0 9976 0698 9351 1395 9927 2033 9903 2790 9878 3488 86 0 15 9973 0741 9945 1482 9918 2223 9880 2964 9863, 3705 45 9996 0785 9938 1569 9998 2354 9877 3138 9846 3223 350 45 9966 0828 9931 1656 9897 2444 9663 3312 9828 4140 15 0 9962 0872 9924 1743 9886 2615 9848 3486 9819 4358 85 0 15 0 9962 0872 9924 1743 9886 2615 9848 3486 9819 4358 85 0 15 0 9954 0058 9988 1917 9862 2875 9816 3834 9770 4792 345 9950 1002 9839 2004 9849 3006 9799 4008 9748 5009 15 15 9941 1089 9881 2177 9822 3266 9781 4181 9726 5226 84 0 15 9941 1089 9881 2177 9822 3266 9781 4181 9726 5226 84 0 30 9954 1132 9871 2264 9807 3366 9734 4528 9793 1175 9861 2351 9792 326 9703 4543 458 9931 1175 9861 2351 9792 326 9703 4543 458 30 9936 1132 9871 2264 9807 3366 9793 4008 9679 5660 30 9954 11 305 9829 2129 9851 2437 9776 3656 9702 4875 9703 5443 455 0 9900 1349 1 9891 2437 9776 3656 9702 4875 9900 1349 1 9851 2437 9776 3656 9702 4875 9600 6310 45 9900 1349 1 9817 0 2827 29720 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 3 | | 9986 | 0523 | 9973 | | 9959 | 1570 | | | 9931 | | | | 45 9979 0664 9957 1308 9936 1962 9914 2616 893 3270 40 9976 0698 9951 1395 9927 2033 9903 2790 87.8 3488 86 0 15 9973 0741 9945 1482 9918 2223 9890 2964 9863 3705 45 30 9966 0828 9931 1566 9908 2354 9877 3138 9846 3923 45 9966 0828 9931 1566 9897 2484 9863 3312 9828 4140 15 0.9958 0.0915 1.9916 0.1830 2.9874 0.2745 3.9832 0.3664 4.9790 0.4575 30 9954 0958 9908 1917 9862 2875 9816 3834 9770 4792 45 9950 1002 9899 2004 9849 3006 9799 4008 9748 5009 15 9941 1089 9881 2177 9822 3266 9762 4355 9703 5443 30 9936 1132 9871 2264 9807 3366 9781 4181 9726 5226 84 0 45 9931 1175 9861 2351 9792 3526 9723 4701 9653 5877 7 0 9925 1219 9851 2437 9776 3656 9702 4875 9627 603 83 0 45 9930 1392 9895 2131 974 39316 9658 5221 9572 6660 30 9900 1349 1,98170 2997 2.9726 0.4046 3.9635 0.5394 4,9543 0,6743 45 9801 1345 9793 2270 9609 4305 9658 5221 9572 6526 45 9931 1476 9829 2611 9743 3916 9658 5221 9572 6526 45 9990 1478 9730 2297 297210 0.4046 3.9635 0.5394 4,9543 0,6743 45 9890 1478 9780 2957 9661 4364 9534 6085 9418 7175 8 0 9903 1392 9805 2783 9708 4175 9611 5567 9813 6959 82 0 15 9897 1435 9793 2870 9609 4305 9586 5740 9483 7175 30 9803 1478 9780 2956 9670 4434 9561 5912 9451 7390 45 9863 1650 9726 3301 9589 4951 9451 6002 9314 8252 15 9870 1007 9740 3215 9611 463 9584 (6085 9418 700) 330 9803 1822 9656 36301 9589 4951 9451 6002 9314 8252 15 9870 1007 9740 3215 9610 4822 9480 6430 9350 8037 445 9866 1693 9711 3387 9567 5000 9422 6774 9278 8467 10 0 9848 1736 9996 3473 9594 5591 9451 6002 9314 8252 30 9803 1850 9726 3444 9359 838 3887 9388 7938 898 8719 1248 30 9808 1919 949 9398 3887 9389 5981 9197 7975 8896 9908 475 30 9831 1650 9726 3454 9498 5467 9330 9895 8487 8602 0609 445 30 9831 1829 9666 3645 9498 5467 9330 7899 9163 9112 30 9781 2079 9563 3445 9498 5467 9330 7899 9163 9112 30 9781 2079 9563 3445 8390 9735 8881 8987 8989 8719 1248 30 9783 2449 9406 4838 9109 7258 8881 9977 804 8852 1018 30 9783 2449 9406 4838 9109 7258 8881 9978 898 8719 1248 31 9793 2419 | | | | | | 1134 | | | | | | | | | 4 0 9976 0698 9951 1395 9927 2033 9903 2790 878 3488 86 15 15 15 9973 0741 9945 1482 9918 2223 9890 2964 8863 3703 30 9969 0785 9938 1569 9908 2354 9877 3138 9846 3923 30 9869 0828 9931 1656 9897 2434 9863 3312 9828 4140 15 0 9962 0872 9924 1743 9886 2615 9818 3386 9819 4358 85 0 15 0 9962 0872 9924 1743 9886 2615 9816 33312 9828 4140 15 0 9958 1000 15 1.9916 0.1830 2.9874 0.2745 3.9832 0.3660 4.9790 0.4575 45 9850 2094 9849 3006 9994 0998 9908 9908 9197 9862 2875 9816 3334 9770 4792 30 9954 0995 9909 2004 9849 3006 9799 4008 9748 5009 16 0 9945 1045 9890 2091 9836 3136 9751 4819 9726 5226 84 0 15 9941 1089 9881 2177 9822 3266 9762 4355 9703 5443 45 9931 1175 9861 2351 9792 3366 9762 4355 9703 5443 45 9931 1175 9861 2351 9792 3366 9762 4355 9703 5443 45 9931 1175 9861 2351 9792 3366 9762 4875 9679 5660 30 9936 1132 9871 2264 9807 3396 9743 4528 9679 5660 31 5 9920 1202 9840 2524 9766 3786 9860 5048 9000 6310 45 9909 0.1349 1.9817 0.2697 2.9726 0.4046 3.9635 0.5944 9760 6310 48 5 0 9909 0.1349 1.9817 0.2697 2.9726 0.4046 3.9635 0.5944 9543 0.9909 0.1349 1.9817 0.2697 2.9726 0.4046 3.9635 0.5394 4.9543 0.6743 18 9907 1435 9903 2870 9690 4305 9856 5740 9843 7175 9861 250 9908 1392 9805 2783 9708 4175 9611 5567 9813 6999 1478 9793 2870 9690 4305 9856 5740 9843 7175 9861 250 9897 1435 9909 2876 9670 4434 9551 9508 9844 1521 9767 3042 9651 4664 9534 6085 9418 77390 30 9863 1650 9726 3301 9589 4915 4564 9534 6085 9418 7606 15 0 9848 1736 9966 3473 9996 1478 9780 2956 9670 4434 9508 3802 9414 8252 3609 9831 1859 9898 13387 9898 1345 9898 1345 9898 1345 9998 1345 9986 3473 9998 9444 5489 9998 3488 9898 8719 1248 77 6 9884 1739 9898 1388 9711 3387 9567 5080 9422 6774 9278 8467 130 9808 1350 9989 1448 9588 3888 9898 8719 1248 77 6 9781 2099 9868 1509 9888 1359 9898 1475 9898 8819 1948 9598 3887 9898 5819 1949 9598 3887 9898 5819 1949 9598 3887 9898 5819 1940 8888 5888 9898 8719 1248 77 6 9673 2429 9468 4884 9201 8885 9898 8719 1248 77 6 9673 2499 9464 4888 9499 9448 8882 9488 9468 8682 2008 9447 550 9699 2444 9588 3898 94 | | | | | | | | | | | | | | | 15 | | | | | | | | | | | | | | | 150 | 4 | | | | | | | | | | | | | | 45 9966 0828 9931 1656 9897 2434 9863 3312 9828 4140 15 0 9998 1972 9924 1743 9886 2615 9348 3486 9819 4388 85 0 15 0 9958 0 0915 1 9916 0 1830 2 9874 0 2745 3 8822 0 3660 4 9790 0 .4575 45 30 9950 1002 9899 2004 9849 3006 9799 4008 9748 5009 36 0 9950 1002 9899 2004 9849 3006 9799 4008 9748 5009 36 0 15 9941 1089 9881 2177 9822 3266 9762 4355 9703 5443 45 30 9936 1132 9871 2264 9807 336 9763 4528 9709 5660 30 9936 1132 9871 2264 9807 3366 9743 4528 9707 5660 30 9936 1132 9871 2264 9807 3366 9743 4528 9707 5660 30 9936 1132 9871 2264 9807 3366 9743 4528 9707 5660 30 9914 1305 9829 2611 9743 3916 9858 521 9920 1202 9840 2524 9760 3786 9880 5048 9000 6310 45 9990 1349 1.9817 0 2697 2 9726 0 4046 3 9635 5034 4 9543 0 6743 4 5 9897 1435 9829 2783 9708 4175 9611 5567 9513 6999 1 500 9800 1478 9793 2870 9690 4305 9586 5740 9483 7175 9861 250 9807 1435 9897 1435 9793 2870 9690 4305 9586 5740 9483 7175 9861 250 9807 1438 9780 2876 9670 4434 9543 0 6693 82 0 9580 1478 9793 2870 9690 4305 9586 5740 9483 7175 9861 5587 159 9807 1507 9740 3215 9610 4822 9480 6430 9350 30 9803 1650 9726 3301 9589 9716 4824 9480 6430 9350 837 458 9884 1521 9767 3042 9651 4564 9534 6085 9418 7606 155 9870 1607 9740 3315 9560 4822 9480 6430 9350 837 458 9884 1521 9767 3042 9651 4564 9534 6085 9418 7606 155 9870 1607 9740 3315 9560 4822 9480 6430 9350 837 458 9884 1521 9767 3042 9651 4564 9534 6085 9418 7606 155 0 9849 1799 1998 13387 9567 5080 9422 6774 9278 8467 155 0 9840 1.779 1.9810 0 9848 1736 9966 3473 9549 5500 9392 6946 9240 8682 80 0 155 9808 1951 9616 3302 9424 5509 9392 6946 9240 8682 80 0 15 9709 1949 49598 3387 9398 5801 917 9785 8969 988 3719 1248 77 0 15 9702 2122 9458 4284 9317 6365 9898 8478 8802 0600 445 9709 9709 1949 9598 3887 9398 5881 917 7875 8969 988 3719 1248 77 0 15 9702 2122 9454 4784 9100 7131 8854 9507 886 869 1400 445 9703 2449 9508 8387 9398 9885 8199 1946 9508 8815 9825 1.035 9703 271 9507 4444 9529 010 683 9359 838 8818 1662 2308 445 9703 2379 9704 2334 9447 4469 9171 7003 8855 9388 8179 1248 77 0 15 9703 2249 | | | | | | | | | | | | | | | 5 | | | | | | | | 2484 | | | | | | | 15 | 5 | | | | | | | | | | | | | | 30 9954 0958 9908 1917 9802 2875 9816 3834 9770 4792 456 45 9950 1002 9899 2004 9849 3006 9799 4008 9748 5009 15 6 0 9945 1045 9890 2004 9849 3006 9781 4181 9726 5226 84 0 15 9941 1089 9881 2177 9822 3266 9762 4355 9703 5443 30 9936 1132 9871 2264 9807 3396 9762 4355 9703 5443 45 9931 1175 9861 2351 9792 3256 9723 4701 9653 5877 17 0 9925 1219 9851 2437 9776 3656 9702 4875 9627 6003 83 0 9914 1305 9829 2611 9743 3016 9658 5221 9870 6603 30 9914 1305 9829 2611 9743 3016 9658 5221 9870 6630 30 9914 1305 9829 2611 9743 3016
9658 5221 9870 6631 45 30 9903 1392 9805 2783 9708 4175 9611 5567 9513 6959 82 0 15 9987 1435 9793 2870 9600 4305 9856 5749 4983 7175 45 30 9801 1478 9780 2956 9670 4434 9561 5912 9451 7390 30 9800 1478 9780 2956 9670 4434 9561 5912 9451 7390 30 9800 1478 9780 2956 9670 4434 9561 5912 9451 7390 30 9800 1478 9780 2956 9670 4434 9561 5912 9451 7390 30 9809 9800 1478 9780 2956 9670 4434 9561 5912 9451 7390 30 9800 1478 9780 2956 9670 4434 9561 5912 9451 7390 30 9800 1478 9780 2956 9670 4434 9561 5912 9451 7390 30 9806 1650 9726 3301 9859 4951 9451 6005 9726 3301 9859 4951 9451 6005 9726 3301 9589 4951 9451 6005 9726 3301 9589 4951 9451 6005 9726 3301 9589 4951 9451 6005 9726 3301 9589 4951 9451 6005 9726 3301 9589 4951 9451 6005 9726 3301 9589 4951 9451 6005 9726 3301 9589 4951 9451 6005 9726 3301 9589 4951 9451 6005 9726 3301 9589 4951 9451 6005 9726 3801 9589 4951 9451 6005 9726 3801 9589 4951 9451 6005 9726 9730 474 5596 998 7461 6005 9726 9730 474 5596 998 7461 9506 9730 9755 345 5979 978 1994 9598 3987 9389 5981 9177 7975 8996 9968 455 9709 2036 9581 4073 9371 6109 9102 8166 8907 9396 9755 34 45 9700 2036 9581 4073 9371 6109 9102 8166 8907 9396 9755 34 45 9700 2036 9581 4073 9371 6305 9898 8719 1924 9398 9755 34 45 9700 2036 9581 4073 9371 6109 9102 8166 8907 9396 9755 34 45 9700 2036 9581 4073 9371 6109 9102 8166 8907 9396 9755 34 45 9700 2036 9581 4073 9371 6109 9102 8166 8907 9396 9755 34 45 9700 2036 9581 4073 9371 6109 9102 8166 8907 9396 9755 34 45 9700 2036 9581 4073 9371 6109 9102 814 | 0 | | | | 1.9916 | 0. 1830 | 2.9874 | | | | | | | | 45 9950 1002 9899 2004 9846 3006 9799 4008 9748 5009 6 0 9945 1045 9890 2091 9836 3136 9781 4181 9726 5526 84 0 3 3 3 3 6 9743 458 9679 5660 15 9941 1089 9881 2177 9822 3266 9762 4355 9703 5443 45 3 3 6 9936 1132 9871 2264 9807 3306 9743 4528 9679 5660 13 5 9931 1175 9861 2351 9792 3326 9723 4701 9653 5877 15 7 0 9925 1219 9851 2437 9776 3656 9702 4875 9627 6093 83 0 15 9920 1262 9840 2524 9760 3786 9680 5048 9000 6310 45 3 0 9914 1305 9829 2611 9743 3916 9658 5221 9572 6526 36 3 0 9914 1305 9829 2611 9743 3916 9658 5221 9572 6526 36 3 0 9909 0.1349 1.9817 0.2897 2.9726 0.4046 3.9635 0.5944 4,9543 0.6733 1 3 9 990 1478 9793 2870 9690 4305 9856 5221 9572 6526 30 30 9900 1478 9793 2870 9690 4305 9856 5740 9483 7175 45 30 9800 1478 9780 2956 9670 4434 9551 5912 9451 7390 30 9803 1478 9780 2956 9670 4434 9551 5912 9451 7390 30 9803 1478 9780 2956 9670 4434 9554 6085 9418 7606 15 9870 1607 9740 3215 9610 4822 9480 6630 3350 8037 43 3 9863 1650 9726 3301 9589 4951 9451 6062 9314 8252 15 9870 1607 9740 3215 9610 4822 9480 6630 3350 8037 43 45 9856 1693 9711 3387 9567 5080 9422 6774 9278 8467 15 0 9848 1736 9996 3473 9544 5209 9392 6046 9240 8682 80 0 15 0 9848 1736 9996 3473 9544 5209 9392 6046 9240 8682 80 0 15 0 9848 1736 9966 3473 9544 5209 9392 6046 9240 8682 80 0 9833 1822 9665 3645 9498 5467 9330 7289 9163 9112 30 9799 1994 9598 3897 9389 5881 917 7875 8896 9998 345 9790 2036 9581 4073 9371 5524 9285 7632 9081 9340 779 9503 445 9700 2036 9581 4073 9371 5524 9385 7892 9163 9112 30 9799 1994 9598 3897 9389 5881 917 7875 8896 9998 345 9703 2447 4609 9171 7038 8895 9388 8119 1248 77 0 973 2419 9406 4838 9109 7258 8812 9677 8515 2096 76 669 2480 9703 2449 3588 3897 9389 5881 917 7857 8896 9988 315 15 9772 2122 9468 4884 9201 6876 8895 9388 8119 1248 77 0 973 2449 9406 4838 9109 7258 8812 9677 8515 2096 76 669 2586 931 9470 7313 8844 6237 9170 7858 8968 8151 9460 4838 9109 7738 8862 9388 8119 1248 77 0 973 2449 9406 4838 9109 7258 8812 9677 8515 2096 76 669 2586 931 9576 9377 7858 8709 9846 8462 2308 845 973 237 9427 | | | | | | | | | | | | | 30 | | 6 0 9945 1045 9890 2091 9836 3136 9781 4181 9726 5226 84 8 4 0 15 | | | | | | | | | | | | | 15 | | 30 9936 1132 9871 2264 9807 3366 9743 4528 9679 5660 345 9931 1175 9861 2351 9792 3526 9723 4701 9653 55877 15 9610 3215 9792 3526 9702 4875 9827 6033 83 0 15 9920 1202 9840 2524 9760 3786 9860 5048 9600 6310 45 0 9990 1349 1.9817 0.2897 2.9726 0.4043 9635 0.5394 4.9543 0.6743 18 0 9903 1392 9805 2783 9708 4175 9611 5567 9513 6959 82 0 15 9897 1435 9793 2870 9690 4305 9586 5740 9483 7175 45 9884 1521 9767 3042 9651 4564 9534 6085 9418 7666 15 567 9813 6989 82 0 9850 1478 9793 2870 9600 4305 9586 5740 9483 7175 45 9884 1521 9767 3042 9651 4564 9534 6085 9418 7666 15 567 30 9880 1478 9780 2956 9670 4434 9543 6085 9418 7666 15 567 30 9880 1478 9780 2956 9670 4434 9540 6330 9863 1650 9726 3301 9589 4951 9451 6002 9314 8252 30 9880 1479 9726 3301 9589 4951 9451 6002 9314 8252 30 9880 1479 13887 9567 5080 9422 6774 9483 7175 30 980 1475 9870 1607 9740 3315 9610 4822 9480 6430 9350 8377 456 30 9883 1650 9726 3301 9589 4951 9451 6002 9314 8252 30 9880 1479 1988 1388 9711 3387 9567 5080 9422 6774 9278 8467 15 0 9840 14791 1988 10 3887 9567 5080 9422 6774 9278 8467 15 0 9840 14791 1988 10 3887 9567 5080 9422 6774 9278 8467 15 0 9880 1951 9616 3302 9424 5596 9298 7401 9123 9326 115 9808 1951 9616 3302 9424 5596 9298 7401 9123 9326 115 9808 1951 9616 3302 9424 5596 9298 7401 9123 9326 115 9702 1202 9458 4478 9391 9451 8098 9451 850 9898 115 9616 3302 9424 5596 9298 7401 9123 9326 115 9702 1222 9345 4478 4939 9295 7632 9981 9351 9407 9503 30 9709 1994 9598 9387 9398 5981 917 9775 8996 9988 350 9709 1994 9598 9387 9398 5981 917 9775 8996 9988 350 9709 1994 9598 9387 9398 5981 917 9775 8996 9988 350 9703 2164 9268 4329 9286 6483 9052 8858 8815 0822 10 15 9772 2122 9454 4244 9317 6365 9898 8487 8862 0600 445 9703 2449 9508 8387 9398 5981 917 9775 8996 9988 350 9731 2479 9503 4488 9290 10 8868 2504 9383 9480 8858 9389 8487 8862 0600 445 9703 2449 9508 8387 9398 5881 917 97875 8998 8487 8862 20060 445 9703 2449 9406 4483 9100 8885 8858 8815 0822 10 10 9703 2449 9404 4888 9109 7788 8882 9677 8815 2096 76 66 66 66 66 66 66 66 66 6 | 6 | | 9945 | 1045 | 9890 | 2091 | 9836 | 3136 | 9781 | 4181 | 9726 | 5226 | 84 0 | | 45 9931 1175 9861 2351 9792 3526 9723 4701 9653 5877 15 7 0 9925 1202 9840 2524 9760 3786 9702 4875 9627 6093 83 0 30 9914 1305 9829 2611 9743 3916 9658 5221 9572 6526 30 45 0,9909 1349 1,98170 2297 29726 0.4043 3635 5394 49543 0,6743 15 8 0 9903 1329 9805 2783 9708 4175 9611 5567 9513 6959 82 0 15 9897 1435 9793 2870 9609 4305 9586 5749 9431 7175 43 30 9801 1478 9760 3424 9561 5912 9451 7309 485 9850 7529 989 | | 15 | 9941 | | 9881 | | | 3266 | | | | | 45 | | To 0 9925 1219 9851 2437 9776 3786 9805 5548 9907 6003 83 0 15 30 9914 1305 9829 2611 9743 3916 9658 5221 9572 6526 30 45 0 9909 1349 13917 9817 9287 2783 9708 4175 9611 5567 9513 6959 82 0 15 9997 1435 9793 2870 9609 4305 9586 5740 9483 7175 45 30 9980 1478 9700 2925 9670 4434 9356 5740 9483 7175 45 30 9804 1521 9767 3042 9651 4564 9534 6085 9418 7666 15 9877 1564 9754 3129 9631 4693 9580 6257 9384 7822 81 30 9863 1500 9726 3301 9589 8475 9481 7666 15 9870 1007 9740 3215 9610 4822 9480 6430 9356 8337 45 30 9863 1550 9726 3301 9589 4951 9451 6062 9314 8252 30 9833 1522 9665 3455 9498 5467 9330 7289 9466 9440 8682 80 0 9848 1736 9966 3473 9544 5220 9392 6946 9240 8682 80 0 15 9825 1865 9649 3730 9474 5596 9298 7461 9123 9326 15 9808 1951 9616 3902 9424 5863 9321 7804 9399 9358 30 9799 1944 5998 3987 9398 5981 9417 9480 1479 9480 94 | | | | | | | | | | | | | | | 15 | - 112 | | | 1175 | | | | | | | | | | | 30 9914 1305 9829 2611 9748 3916 9658 5221 9572 6526 3656 8 0 9903 1392 9805 2783 9708 4175 9611 5567 9513 6659 82 0 15 9897 1435 9793 2870 9690 4305 9586 5740 9483 7175 45 9896 1478 9780 2956 9670 4434 9534 6085 9418 7606 15 9 0 9877 1564 9754 3129 9631 4693 9580 6257 9384 7822 81 0 15 9870 1007 9740 3215 9610 4822 9450 6430 9586 15 912 9451 7390 30 9863 1650 9726 3301 9589 4951 9451 6602 9314 8252 10 15 9870 1007 9740 3215 9610 4822 9450 6430 9350 8037 45 9856 1693 9711 3387 9567 5080 9422 0774 9278 8467 15 10 0 9848 1736 9696 3373 9544 5209 9392 6646 9240 8682 80 0 15 9840 1779 1 96810 3559 2 9521 0 5338 1 3930 2 0 718 4 9520 8 983 1 152 9665 3645 9498 5467 9330 7289 9102 3 14 9 940 4 9598 3987 9398 5467 9330 7289 9163 9112 3 15 9808 1951 9616 3902 9424 5853 9231 7804 9393 9755 30 9799 1994 9598 3987 9398 5981 917 7875 8996 9908 35 30 9799 1994 9598 3987 9398 5981 917 7875 8996 9908 35 30 9799 1994 9598 3987 9398 5981 917 7875 8996 9908 35 30 9799 1994 9598 3987 9398 5981 917 7875 8996 9908 35 30 9763 2164 9526 4344 9318 6237 917 7804 9339 9755 30 9778 2122 9468 4584 494 9578 3987 9398 5981 917 7875 8996 9908 35 30 9763 2164 9526 4344 9317 6366 9089 8487 8862 0609 447 5970 2036 9581 4073 9371 6109 9162 8166 8907 0336 9836 30 9763 2164 9526 4344 9317 6366 9089 8487 8862 0609 447 5970 9563 4158 9344 (237 9126 8316 8907 0336 78 6 30 97781 2079 9563 4158 9344 (237 9126 8316 8907 0336 78 6 30 9773 2277 1,9507 0,4414 2,9200 0,621 3,9014 0,8828 4,8767 1,1035 15 9772 2122 9468 4584 9201 6876 8995 9388 8119 1248 77 6 30 9784 2232 9468 4584 9201 6876 8995 9388 8119 1248 77 6 30 9763 2149 9406 4838 9109 7258 8812 9677 8515 2036 76 6 45 9670 2546 9341 5092 1703 8895 9388 8119 1248 77 6 15 9692 2442 9385 4923 9077 7388 8769 9385 8618 1662 2308 445 9670 2546 9364 9363 8008 9447 7511 8874 8852 2770 140 9703 2419 9406 4838 9109 7258 8812 9677 8515 2006 76 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 7 | | | | | | | | | | | | | | 45 0, 9909 0, 1349 1, 9817 0, 2697 2, 9726 0, 4040 3, 9635 10, 5394 4, 9543 0, 6743 8 0 9903 1392 9805 2783 9708 4175 9611 5567 9513 6959 82 0 15 9897 1435 9793 2870 9690 4305 9586 5740 9483
7175 43 30 9800 1478 9780 2956 9670 4434 9561 5912 9451 7390 45 9884 1521 9767 3042 9651 4564 9534 6085 9418 7606 15 9870 1607 9740 3215 9610 4822 9480 6430 3950 8027 15 9870 1607 9740 3215 9610 4822 9480 6430 3950 8037 15 9870 1607 9740 3215 9610 4822 9480 6430 3950 8037 16 9848 1736 9996 3473 9544 5209 9392 6946 9240 8682 80 0 15 9833 18522 9665 3645 9498 5467 9330 7289 9163 9112 30 9833 18522 9665 3645 9498 5467 9330 7289 9163 9112 31 0 9846 1736 9996 33 3816 9449 5724 9258 7461 9123 9326 31 0 9846 1908 9633 3816 9449 5724 9258 7461 9123 9326 31 0 9846 1908 9633 3816 9449 5724 9258 7461 9123 9326 31 0 9878 12079 9563 4158 9342 5853 9217 8949 939 9755 43 30 9799 1994 9598 3887 9398 5981 9197 7875 8996 9968 30 9790 2036 9581 4073 9371 6109 9162 8146 8952 1.0182 30 9763 2164 9526 4244 9317 6306 9962 8468 8807 0396 785 30 9763 2164 9526 4244 9317 6306 9968 8815 0822 30 9763 2164 9526 4249 9317 6306 9989 8487 8862 0609 45 0,9753 0,2207 1,9507 0,4414 2,9260 0,6621 3,9014 0,8828 4,8767 1,1035 31 0 9744 2250 9487 4499 9231 6749 8975 8988 8719 1248 30 9763 2164 9526 4329 9289 6493 9052 8588 8815 0822 30 9763 2149 9406 4838 9109 7258 8881 8869 1406 445 30 9763 2449 9406 4838 9109 7258 8881 8869 1440 30 9763 2449 9406 4838 9109 7258 8882 9677 8815 2006 76 6 30 9681 2504 9385 4923 9077 7385 898 8719 1248 77 30 9681 2504 9385 4923 9077 7385 8769 9868 8669 1440 30 9681 2504 9385 4923 9077 7385 8769 9868 8662 2308 30 9681 2504 9385 4923 9077 7385 8769 9868 862 22730 30 9681 2504 9385 4923 9077 7385 8769 9868 862 22730 31 0 0 9763 2149 9406 4838 9109 7258 8812 9677 8515 2006 76 6 30 9763 2164 9526 8368 9908 7768 8862 0184 8352 2770 30 9763 2164 9526 8586 8682 0184 8352 2770 30 9763 2164 9568 8586 9819 717 7038 8862 0184 8352 2770 30 9763 2164 9568 8586 9819 717 7038 886 | | | | | | 2524 | | | | | | | | | 8 0 9903 1392 9905 2783 9708 4175 9611 5567 9513 6959 82 0 15 9897 1435 9793 2270 9609 4305 9586 5749 9483 7175 45 30 9890 1478 9780 2956 9670 4434 9561 5912 9451 7390 30 45 9884 1521 9767 3042 9651 4504 9534 6085 9418 7606 15 15 9870 1607 9740 3215 9610 4822 9480 6430 9350 8027 3844 7822 81 0 30 9863 1650 9726 3301 9589 4951 9451 6602 9314 8252 30 45 9856 1693 9711 3387 9567 5080 9422 6774 9278 8467 15 10 0 9848 1736 9696 3473 9544 5209 9392 6946 9240 8682 80 0 15 0,9840 0.1779 1.9081 0.3559 2.9521 0.5338 3.9362 0.7118 4.9202 0.8897 36 0 15 0,9840 0.1779 1.9081 0.3559 2.9521 0.5338 3.9362 0.7118 4.9202 0.8897 36 0 15 0,9840 0.908 1951 9616 3902 9424 5853 9231 7804 9939 9326 15 0 15 0,9840 0.908 1951 9616 3902 9424 5853 9231 7804 9039 9326 15 0 15 0,9840 0.908 1951 9616 3902 9424 5853 9231 7804 9039 9755 80 0 15 0,9781 2079 9563 4158 9344 6237 9126 8316 8907 9039 9755 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | | | | | | | | | | | | | 15 | 0 | | | 1202 | | 2782 | 0708 | | | 5567 | | | | | 30 9800 1478 9750 2956 9670 4434 9561 5912 9451 7390 364 59 9854 152 9767 3042 9651 4564 9554 6085 9418 7666 15 9 0 9877 1564 9754 3129 9631 4693 9508 6257 9384 7822 81 0 15 9870 1607 9740 3215 9610 4822 9480 6430 9350 8037 30 9863 1650 9726 3301 9589 4951 9451 6602 9314 8252 36 45 9856 1693 9711 3387 9567 5080 9422 6774 9278 8467 10 0 9848 1736 9696 3473 9544 5209 9392 6964 9240 8682 80 0 15 0 9840 0.1779 1.9681 0.3559 2.9521 0.5338 3.9362 0.7118 4.9202 0.8897 45 30 9833 1822 9665 3645 9488 5467 9330 7289 9163 9112 326 11 0 9816 1908 9633 3816 9449 5724 9205 7632 9881 9326 11 0 9816 1908 9633 3816 9449 5724 9205 7632 9811 9326 15 5 9808 1951 9616 3002 9424 5853 9231 7804 9039 9755 44 5 9700 2036 9381 4073 9371 6109 9162 8146 8952 1.0182 12 0 9781 2079 9563 4458 9344 6237 9126 8316 8907 0396 9836 15 9772 2122 9545 4244 9317 6365 9089 8487 8862 0609 45 30 9763 2164 9526 4249 8374 8365 8815 0822 45 30 9763 2164 9526 4249 9374 9384 6237 9126 8316 8907 0396 78 6 30 9763 2164 9526 4249 9376 9632 8458 9852 1.0182 15 9772 2122 9468 4584 9201 6876 8935 9168 8669 1400 45 5 15 9772 2122 9468 4584 9201 6876 8935 9168 8669 1400 45 15 9692 2402 9385 4923 9077 7388 898 8719 1248 77 0 15 9692 2402 9385 4923 9077 7388 8812 9677 8815 2006 76 6 15 9692 2402 9385 4923 9077 7388 8812 9677 8815 2006 76 6 15 9692 2402 9385 4923 9077 7388 8862 0184 8352 2730 45 9670 2546 9331 9509 9783 88140 713 8785 8896 9713 2377 9427 44754 9400 9171 7003 8895 9338 8618 1672 30 9681 2540 9385 4923 9077 7388 8812 9677 8815 2006 76 6 15 9692 2402 9385 4923 9077 7388 8862 0184 8352 2730 45 9670 2546 9331 5092 9011 7688 8662 1084 8352 2730 45 9679 2546 9331 5092 9011 7688 8662 1084 8352 2730 45 9679 2546 9331 5092 9011 7688 8662 1084 8352 2730 45 5 9679 2546 9341 5092 9011 7688 8662 1084 8352 2730 45 9679 2546 9341 5092 9011 7688 8662 1084 8352 2730 4160 45 9670 2546 9341 5092 9011 7688 8662 1084 8352 2730 4400 45 9670 2546 9341 5092 9011 7688 8662 1084 8352 2730 4400 45 9670 2546 9341 5092 9011 7688 8662 1084 8352 2730 4400 45 9670 2546 9341 5092 9011 | 0 | | | 1435 | 9793 | 2870 | | | | 5740 | | | | | 45 984 1521 9767 3042 9651 4564 9534 6085 9418 7666 15 9 0 9877 1564 9754 3129 9631 4603 9508 6257 9384 7822 81 0 15 9870 1607 9740 3215 9610 4822 9480 6430 3350 8037 43 30 9863 1650 9726 3301 9589 4911 9451 6602 9314 8252 364 10 0 9848 1736 9966 3473 9544 5209 9392 6046 9240 8682 80 0 15 0, 9840 0, 1779 1, 9816 0, 3559 2, 9521 0, 5388 1, 3082 0, 718 4, 9202 0, 8897 44 10 15 0, 9840 0, 1779 1, 9816 0, 3559 2, 9521 0, 5388 1, 3082 0, 718 4, 9202 0, 8897 44 10 10 9816 1908 9633 3816 9449 5724 9205 7632 9081 9314 9326 15 10 9816 1908 9633 3816 9449 5724 9205 7632 9081 9340 179 10 10 10 10 10 10 10 10 10 10 10 10 10 | | | | | | | | | | | | | | | 9 0 9877 1564 9754 3129 9631 4663 9508 6257 9384 7822 81 0 15 9870 1607 9740 3215 9610 4822 9480 6430 9350 8037 45 30 9863 1650 9726 3301 9589 4951 9451 6602 9314 8252 13 0 9843 1736 9696 3473 9544 5209 9392 6946 9240 8682 80 0 15 0,9840 0,1779 1,9681 0,3559 2,9521 0,5338 3,9362 0,7118 4,9202 0,8897 330 9833 1822 9665 3645 9498 5467 9330 7289 9163 9112 36 15 0,9840 0,1779 1,9681 0,3559 2,9521 0,5338 3,9362 0,7118 4,9202 0,8897 345 9825 1865 9649 3730 9474 5596 9298 7461 9123 9326 110 0 9816 1908 9633 3816 9449 5724 9255 7632 9881 9340 939 9755 48 30 9799 1994 9598 3987 9398 5981 9197 7875 8996 9968 30 9799 1994 9598 3987 9398 5981 9197 7875 8996 9968 30 9799 1994 9598 3415 9344 6237 9126 8316 8907 0396 78 6 12 0 9781 2079 9563 4158 9344 6237 9126 8316 8907 0396 78 6 12 0 9781 2079 9563 4158 9344 6237 9126 8316 8907 0396 78 6 15 9772 2122 9545 4244 9317 6306 9089 8487 8862 0609 36 30 9769 2164 9526 4249 9317 6306 9089 8487 8862 0609 36 30 9769 2164 9526 4249 9317 6306 9582 8588 8815 0822 36 45 0,9753 0,2207 1,9507 0,414 2,9260 0,6621 3,9014 0,8828 4,8767 1,1035 15 9774 2232 9468 4584 9201 6876 8935 9168 8669 1460 45 15 9734 2232 9468 4584 9201 6876 8935 9188 8719 1248 77 6 15 9734 2232 9468 4584 9201 6876 8935 9188 8669 1460 45 15 9733 2419 9406 4838 9109 7238 8844 8367 1,1035 15 9733 2419 9406 4838 9109 7258 8812 9677 8515 2006 76 6 15 9692 2462 9385 4923 9077 7385 8879 9386 8669 1460 45 15 9692 2462 9385 4923 9077 7385 8862 0184 8352 2730 15 5 9699 2462 9385 4923 9077 7385 8862 0184 8352 2730 15 5 9699 2462 9385 4923 9077 7385 8769 9846 8462 2308 45 16 2 2308 45 1 | | | | | | | | | | | | | 15 | | 15 9870 1007 9740 3215 9610 4822 9480 6430 9350 8037 30 9863 1650 9726 3301 9589 4951 9451 6602 9314 8252 34 64 9856 1693 9711 3387 9567 5080 9422 6774 9278 8467 15 0 0 9848 1736 9996 3473 9567 5080 9422 6774 9278 8467 15 0 0 9848 1736 9996 3473 9544 5209 9392 6946 9240 8882 80 0 15 0,9840 0.1779 1.96810 .3559 2.9521 0.5388 1,3362 0.7118 4,9202 0.8897 45 30 9833 1822 9665 3645 9498 5467 9330 7289 9163 9112 30 9833 18522 9665 3645 9498 5467 9330 7289 9163 9112 30 9836 1855 9649 3730 9474 5596 998 7461 9123 9326 15 10 9816 1908 9633 3316 9449 5724 9255 7632 9081 9540 79 0 15 9808 1951 9616 3902 9424 5853 9231 7804 9039 9755 30 9799 1994 9598 3987 9398 5981 9197 7975 8996 9908 345 9790 2036 9581 4073 9371 6109 9162 8146 8952 1.0182 12 0 9781 2079 9563 4158 9344 6237 9126 8316 8907 0396 78 0 12 0 9763 2124 9526 4244 9317 6365 9089 8487 8862 0609 345 0.9753 0.2207 1.9307 0.4414 2.9260 0.6621 3.9014 0.8828 4.8767 1.1035 15 9772 2122 9468 4584 9201 6876 8995 9388 815 0822 36 30 9724 2334 9447 4609 9171 7003 8895 9388 815 0822 36 30 9724 2334 9447 4609 9171 7003 8895 9388 816 1672 30 9733 0.2207 1.9307 0.4414 2.9260 0.6621 3.9014 0.8828 4.8767 1.1035 15 9734 2232 9468 4584 9201 6876 8935 9168 8669 1460 45 15 9692 2442 9385 4983 9109 7258 8812 9677 8154 00 9713 2377 9427 4754 9140 7131 8854 9507 8567 1884 1672 30 9681 2540 9368 3508 9044 7511 8728 8862 9679 8866 2309 9733 2419 9406 4838 9109 7258 8812 9677 8515 2006 76 6 15 9692 2440 9385 3508 9044 7511 8728 1.005 8672 330 9681 2540 9363 5008 9044 7511 8728 862 2006 76 6 6 15 9609 2440 9368 3508 9044 7511 8728 862 2008 76 6 6 15 9692 2440 9385 5008 9044 7511 8728 862 2008 76 6 6 15 9609 2440 9363 5008 9044 7511 8728 862 2008 76 6 6 15 9609 2440 9363 5008 9044 7511 8728 862 2008 76 6 6 15 9609 2440 9363 5008 9044 7511 8728 860 904 840 840 840 840 840 840 840 840 840 8 | 9 | | | | | | | | | | | | | | 45 | | | 9870 | | | 3215 | 9610 | 4822 | 9480 | | | | 45 | | 10 | | | | 1650 | | | | | | | | | 30 | | 15 | | | | | | | | | | | | | 15 | | 30 | 10 | | | | | | | | | | | | | | 45 | | | | 0.1779 | | | | | | 0.7118 | 4. 9202 | | | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | | | | | | | | | | | | | 15 9808 1951 9616 3902 9424 5853 9231 7804 9039 9755 44 30 9799 1994 9398 3987 9398 5981 9197 7975 8996 9908 45 9790 2036 9581 4073 9371 6109 9102 8146 8952
1.0182 15 12 0 9781 2079 9563 4158 9344 6237 9126 8316 8907 0396 78 0 15 9772 2122 9545 4244 9317 6365 9089 8487 8852 0606 78 0 16 9763 2164 9326 4329 9289 6493 9052 8658 8815 0822 10 17 9763 2164 9326 4329 9289 6493 9052 8658 8815 0822 10 18 0 9763 2164 9326 4329 9289 6493 9052 8658 8815 0822 10 18 0 9763 2164 9326 4329 9289 6493 9052 8658 8815 0822 10 18 0 9744 2230 9489 4584 9201 6876 8935 9988 8719 1248 77 01 18 0 9744 2232 9468 4584 9201 6876 8935 9168 8669 1460 44 30 9763 2137 9427 4754 9140 7131 8854 9507 8567 1884 1672 36 45 9713 2377 9427 4754 9140 7131 8854 9507 8567 1884 1672 36 15 9602 2462 9385 4923 9077 7385 8709 9346 8462 2308 44 15 9602 2462 9385 4923 9077 7385 8709 9346 8462 2308 44 15 9602 2462 9385 4923 9077 7385 8709 9346 8462 2308 44 15 9602 2546 9341 5092 9011 7688 8682 0184 8352 2730 15 6 9659 2588 8919 1676 8978 7768 8687 09538 2296 2730 15 6 9659 2588 8919 1676 8978 7768 8687 0538 2296 2740 15 6 9659 2588 8919 1676 8978 7768 8687 0538 2296 2740 2914 75 6 | 11 | | | | | | | | | | | | | | 30 9709 1994 9508 3987 9398 5981 9197 7975 8996 9908 345 9790 2036 9581 4073 9371 6109 9162 8146 8952 1.0182 12 15 9772 2122 9545 4244 9317 6365 9089 8487 8862 0609 45 30 9763 2164 9526 4244 9317 6365 9089 8487 8862 0609 45 45 0.9753 0.2207 1.9507 0.4414 2.9260 0.6621 3.9014 0.8828 4.8767 1.1035 15 30 9744 2250 9487 4499 9231 6749 8975 8998 8719 1248 77 62 62 62 62 62 62 62 | 11 | | | | | | | | | | | | | | 45 9700 2036 9881 4073 9371 6109 9162 8146 8952 1.0182 12 12 0 9781 2079 9563 4158 9344 6237 9120 8316 8907 0306 78 6 30 9763 2164 9526 4329 9289 6483 9052 858 8815 0822 365 97530 2207 1,9507 0,414 2,9260 0,621 3014 0,852 48767 1,1035 15 13 0 9744 2250 9487 4499 9231 6749 8975 8998 8719 1248 77 4 30 9724 2322 9468 4854 9201 6876 8935 9168 8669 1400 47 4 30 9724 2334 9447 4699 9171 7003 8895 9188 8669 1400 4 4 97 | | | | | | | | | | | | | 30 | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | | | | | | | | | | | 15 | | 15 9772 2122 9454 4244 9317 6365 9089 8487 8862 0669 6483 90763 2164 9526 4329 9289 6493 9052 8568 8815 0822 3683 450 0.9753 0.207 1.9507 0.4414 2.9200 0.621 3.9014 0.8828 4.8767 1.1035 718 1.5 9734 2232 9468 4858 9201 6876 8995 9168 8669 1460 4583 9724 2334 9447 4669 9171 7003 8895 9168 8669 1460 4583 9713 2377 9427 4754 9140 7131 8854 9507 8567 8584 1672 3084 1672 3084 16876 | 12 | | | | | | | | | | | | 78 0 | | 30 9763 2164 9526 4329 9289 6493 9052 8658 8815 0822 36 0.9753 0.2071 .9507 0.4414 2.9260 0.6621 3.9014 0.8828 4.8767 1.1055 1.5 9734 2225 9487 4499 9231 6749 8875 8988 8719 1248 77 6.0 1.5 9734 2222 9468 4584 9201 6876 8935 9168 8669 1460 45 30 9724 2334 9447 4609 9171 7003 8885 9338 8618 1672 30 45 9713 2377 9427 4754 9140 7131 8854 9507 8567 1884 162 30 9681 2504 9363 8019 7258 8812 9407 8515 2096 76 6.0 15 9692 2402 9385 4023 9077 7355 8709 9846 8462 2308 45 9670 8568 8678 9670 8588 8618 15 9670 8588 8618 15 9682 8402 9017 8515 2096 76 6.0 15 9692 2402 9385 4023 9077 7355 8709 9846 8462 2308 45 9670 8588 8618 15 9670 8588 9678 8515 2096 76 6.0 15 9692 2402 9385 4023 9077 7355 8709 9846 8462 2308 45 9670 8588 8618 8352 2730 15 9659 2588 9319 176 8978 7765 8637 0353 8296 2941 75 6.0 15 9659 2588 9319 176 8978 7765 8637 0353 8296 2941 75 6.0 15 9659 2588 9319 176 8978 7765 8637 0353 8296 2941 75 6.0 15 9659 2588 9319 176 8978 7765 8637 0353 8296 2941 75 6.0 15 9659 2588 9319 176 8978 7765 8637 0353 8296 2941 75 6.0 15 9659 2588 9319 176 8978 7765 8637 0353 8296 2941 75 6.0 15 9659 2588 9319 9176 8978 7765 8637 0353 8296 2941 75 6.0 15 9659 2588 9319 9176 8978 7765 8637 0353 8296 2941 75 6.0 15 9659 2588 9319 9176 8978 7765 8637 0353 8296 2941 75 6.0 15 9659 2588 9319 9176 8978 7765 8637 0353 8296 2941 75 6.0 15 9659 2588 9319 9176 8978 7765 8637 0353 8296 2941 75 6.0 15 9659 2588 9319 9176 8978 7765 8637 0353 8296 2941 75 6.0 15 9659 2588 9319 9176 8978 7765 8637 0353 8296 2941 75 6.0 15 9659 2588 9319 9176 8978 7765 8637 0353 8862 918 8352 2730 917 758 8682 918 8352 918 918 918 918 918 918 918 918 918 918 | By To | | | 2122 | 9545 | 4244 | 9317 | 6365 | 9089 | 8487 | 8862 | 0609 | 45 | | 13 0 9744 2250 9487 4499 9231 6749 8975 8998 8719 1248 77 0 15 9734 2292 9468 4584 9201 6876 8935 9168 8669 1460 36 30 9724 2334 9447 4669 9171 7003 8895 9338 8618 1672 36 45 9713 2377 9427 4754 9140 7131 8854 9507 8567 1884 15 14 0 9703 2419 9406 4838 9109 7258 8812 9677 8515 2096 76 0 15 9692 2462 9385 4923 9077 7385 8769 9846 8462 2308 44 30 9681 2504 9363 5008 9044 7511 8726 1.0015 8407 2519 36 45 9670 2546 9341 5092 9011 7638 8622 0184 8352 2730 1 15 6 9659 2588 9319 5176 8978 7765 8637 0353 8296 2941 75 0 Dep. Lat. Dep. Lat. Dep. Lat. Dep. Lat. Dep. Lat. | | 30 | | | | 4329 | 9289 | | 9052 | | | | | | 15 9734 2232 9468 4584 9201 6876 8935 9168 8669 1460 45 30 9724 2334 9447 4669 9171 7003 8895 9338 8618 1672 33 45 9713 2377 9427 4754 9140 7131 8854 9507 8567 1884 115 14 0 9703 2449 9406 4838 9109 7258 8812 9677 8515 2096 76 45 30 9681 2504 9363 5008 9044 7511 8726 1.0015 8407 2519 36 45 9670 2546 9341 5092 9011 7688 8682 0184 8352 2730 15 15 9 9659 2588 9319 5176 8978 7768 8637 0353 3296 2941 756 Dep. Lat | | | | | | | | | | | | | | | 30 9724 2334 9447 4769 9171 7003 8895 9338 8018 1672 304 45 9713 2377 9427 4754 9140 7131 8854 9507 8567 1884 15 14 0 9703 2449 9406 4838 9109 7258 8812 9677 8515 2096 76 6 15 9692 2402 9385 4923 9077 7355 8709 9846 8462 2308 4876 30 9681 2594 9363 5008 9044 7511 8726 1.0015 8407 2519 36 45 9670 2546 9341 5092 9011 7638 8682 0184 8352 2730 11 15 9659 2588 9319 5176 8978 7765 8687 0353 8296 2941 75 16 Dep. Lat. Dep. Lat. Dep. Lat. Dep. Lat. Dep. Lat. Course | 13 | | | | | | | | | | | | 77 0 | | 45 9713 2377 9427 4754 9140 7131 8854 9507 8567 1884 18 14 0 | | | | | | | | | | | | | | | 14 0 9762 2419 9406 4838 9109 7258 8812 9677 8515 2006 76 (15 9692 2402 9385 4923 9077 7385 8769 9846 8462 2308 8407 2519 30 9681 2504 9383 5088 9044 7511 8726 1.0015 8407 2519 30 45 9670 2546 9341 5092 9011 7638 8682 0184 8352 2730 15 6 9659 2589 9319 5176 8978 7765 8637 0353 8296 2941 75 (Dep. Lat. Dep. Lat. Dep. Lat. Dep. Lat. Dep. Lat. | | | | | | | | | | | | | | | 15 9692 2462 9385 4923 9077 7385 8769 9846 8462 2308 45 30 9681 2504 9363 5008 9044 7511 8726 1.0015 8407 2519 36 45 9670 2546 9341 5092 9011 7638 8682 0184 8352 2730 15 15 0 9659 2588 9319 3176 8978 7765 8637 0353 8296 2941 75 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 14 | | | | | | | | | | | | | | 30 9681 2504 9363 5008 9044 7511 8726 1.0015 8407 2519 345 9670 2546 3341 5092 9011 7638 8682 0184 8352 2730 11 15 6 9659 2588 9319 5176 8978 7765 8637 0353 8296 2941 75 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 14 | | | | | | | | | | | | | | 45 9670 2546 9341 5092 9011 7638 8682 0184 8352 2730 15
15 6 9659 2588 9319 5176 8978 7765 8637 0353 8296 2941 75 0
Dep. Lat. Dep. Lat. Dep. Lat. Dep. Lat. Dep. Lat. Course | | | | | | | | | 8726 | 1.0015 | 8407 | | | | 15 6 9659 2588 9319 5176 8978 7765 8637 0353 8296 2941 75 0
Dep. Lat. Dep. Lat. Dep. Lat. Dep. Lat. Dep. Lat. Course | | | | | | | | | | | 8352 | | 15 | | Dep. Lat. Dep. Lat. Dep. Lat. Dep. Lat. Dep. Lat. Course | 15 | | | | | | | | | | | | | | Course | | - | - | - | - | | | | - | | | - | | | | | | | | | | | | | | | | Course | TABLE 3.—Traverse—Continued. | [a | | Dist | . 1. | Dis | t. 2. | Dis | t. 3. | Dis | t. 4. | Dis | st. 5. | | |--------|----------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|------------| | Course | е. | Lat. | Dep. | | | 0 | 1 | | 1000 | 7 | 18/8 | | 1071.0 | - | | 201 | | 0 / | | 15 | 15 | | | 1.9296 | | 2.8944 | 0.7891 | 3.8591 | 1.0521 | 4.8239 | 1.3151 | 74 45 | | | 30 | 9636 | 2672 | 9273 | 5345 | 8909 | | 8545 | 0690 | 8182 | 3302 | 30
15 | | 16 | 45
0 | 9625
9613 | 2714
2756 | 9249
9225 | 5429
5513 | 8874
8838 | 8143
8269 | 8498
8450 | 0858
1025 | 8123
8063 | 3572
3782 | 74 0 | | | 15 | 9600 | 2798 | 9223 | 5597 | 8801 | 8395 | 8402 | 1193 | 8002 | 3991 | 45 | | | 30 | 9588 | 2840 | 9176 | 5680 | | 8520 | 8353 | 1361 | 7941 | 4201 | 30 | | | 45 | 9576 | 2882 | 9151 | 5764 | 8727 | 8646 | 8303 | 1528 | 7879 | 4410 | 15 | | 17 | 0 | 9563 | 2924 | 9126 | 5847 | 8689 | 8771 | 8252 | 1695 | 7815 | 4619 | . 73 0 | | | 15 | 9550 | 2965 | 9100 | 5931 | 8651 | 8896 | 8201 | 1862 | 7751 | 4827 | 45 | | | 30 | 9537 | 3007 | 9074 | 6014 | 8612 | 9021 | 8149 | 2028 | 7686 | 5035 | 30 | | | 45 | | | 1.9048 | | | | | | | 1.5243 | 15 | | 18 | 0 | 9511 | 3090 | 9021 | 6180
6263 | 8532
8491 | 9271
9395 | 8042
7988 | 2361
2527 | 7553
7485 | 5451
5658 | 72 0
45 | | | 15
30 | 9497
9483 | 3132
3173 | 8994
8966 | 6346 | 8450 | 9519 | 7933 | 2692 | 7416 | 5865 | 30 | | | 45 | 9469 | 3214 | 8939 | 6429 | 8408 | 9643 | 7877 | 2858 | 7347 | 6072 |
15 | | 19 | 0 | 9455 | 3256 | 8910 | 6511 | 8366 | 9767 | 7821 | 3023 | 7276 | 6278 | 71 0 | | | 15 | 9441 | 3297 | 8882 | 6594 | 8323 | 9891 | 7764 | 3188 | 7204 | 6485 | 45 | | | 30 | 9426 | 3338 | 8853 | 6676 | 8279 | 1.0014 | 7706 | 3352 | 7132 | 6690 | 30 | | | 45 | 9412 | 3379 | 8824 | 6758 | 8235 | 0138 | 7647 | 3517 | 7059 | 6896 | 15 | | 20 | 0 | 9397 | 3420 | 8794 | 6840 | 8191 | 0261 | 7588 | 3681 | 6985 | 7101 | 70 0 | | | 15 | | 0.3461 | 1.8764 | 0.6922 | 2.8146 | 1.0384 | 3.7528 | 1.3845 | 4.6910 | 1.7306 | 45 | | | 30 | 9367 | 3502 | 8733 | 7004 | 8100 | 0506 | 7467 | 4008 | 6834 | 7510 | 30 | | 21 | 45 | 9351 | 3543 | 8703 | 7086 | 8054 | 0629 | 7405
7343 | 4172 | 6757 | 7715 | 69 0 | | | 0 | 9336
9320 | 3584
3624 | 8672
8640 | 7167
7249 | 8007
7960 | 0751
0873 | 7280 | 4335
4498 | 6679
6600 | 7918
8122 | 69 0 | | | 30 | 9304 | 3665 | 8608 | 7330 | 7913 | 0995 | 7217 | 4660 | 6521 | 8325 | 30 | | | 45 | 9288 | 3706 | 8576 | 7411 | 7864 | 1177 | 7152 | 4822 | 6440 | 8528 | 15 | | 22 | 0 | 9272 | 3746 | 8544 | 7492 | 7816 | 1238 | 7087 | 4984 | 6359 | 8730 | 68 0 | | | 15 | 9255 | 3786 | 8511 | 7573 | 7766 | 1359 | 7022 | 5146 | 6277 | 8932 | 45 | | 1 3 | 30 | 9239 | 3827 | 8478 | 7654 | 7716 | 1481 | 6955 | 5307 | 6194 | 9134 | 30 | | | 45 | | 0.3867 | | 0.7734 | | 1.1601 | | | 4.6110 | 1.9336 | 15 | | 23 | 0 | 9205 | 3907 | 8410 | 7815 | 7615 | 1722 | 6820 | 5629 | 6025 | 9537 | 67 0 | | | 15 | 9188 | 3947 | 8376 | 7895 | 7564 | 1842 | 6752 | 5790 | 5940 | 9737 | 45 | | | 30 | 9171 | 3987 | 8341 | 7975 | 7512 | 1962 | 6682 | 5950 | 5853 | 9937 | 30 | | 24 | 45 | 9153
9135 | 4027
4067 | 8306 | 8055 | 7459 | 2082
2202 | 6612
6542 | 6110 | 5766 | 2.0137 | 66 0 | | | 0
15 | 9118 | 4107 | 8271
8235 | 8135
8214 | 7406
7353 | 2322 | 6470 | 6269
6429 | 5677
5588 | 0337
0536 | 66 0 | | | 30 | 9100 | 4147 | 8199 | 8294 | 7299 | 2441 | 6398 | 6588 | 5498 | 0735 | 30 | | | 45 | 9081 | 4187 | 8163 | 8373 | 7214 | 2560 | 6326 | 6746 | 5407 | 0933 | 15 | | 25 | 0 | 9063 | 4226 | 8126 | 8452 | 7189 | 2679 | 6252 | 6905 | 5315 | 1131 | 65 0 | | 1 | 15 | | 0.4266 | | 0.8531 | 2.7034 | | 3.6178 | | 4.5223 | 2.1328 | 45 | | | 30 | 9026 | 4305 | 8052 | 8610 | 7078 | 2915 | 6103 | 7220 | 5129 | 1526 | 30 | | | 45 | 9007 | 4344 | 8014 | 8689 | 7021 | 3033 | 6028 | 7378 | 5035 | 1722 | 15 | | 26 | 0 | 8988 | 4384 | 7976 | 8767 | 6964 | 3151 | 5952 | 7535 | 4940 | 1919 | 64 0 | | | 15 | 8969 | 4423 | 7937 | 8846 | 6906 | 3269 | 5875 | 7692 | 4844 | 2114 | 45 | | | 30
45 | 8949
8930 | 4462
4501 | 7899
7860 | 8924 | 6848 | 3386 | 5797 | 7848 | 4747 | 2310 | 30
15 | | 27 | 0 | 8910 | 4540 | 7820 | 9002
9080 | 8789
6730 | 3503
3620 | 5719
5640 | 8004
8160 | 4649
4550 | 2505
2700 | 63 0 | | | 15 | 8890 | 4579 | 7780 | 9157 | 6671 | 3736 | 5561 | 8315 | 4451 | 2894 | 45 | | | 30 | 8870 | 4617 | 7740 | 9235 | 6610 | 3852 | 5480 | 8470 | 4351 | 3087 | 30 | | 1 | 45 | 0.8850 | 0.4656 | 1.7700 | 0.9312 | 2.6550 | 1.3968 | 3.5400 | 1.8625 | 4. 4249 | 2.3281 | 15 | | 28 | 0 | 8829 | 4695 | 7659 | 9389 | 6488 | 4084 | 5318 | 8779 | 4147 | 3474 | 62 0 | | | 15 | 8809 | 4733 | 7618 | 9466 | 6427 | 4200 | 5236 | 8933 | 4045 | 3666 | 45 | | | 30 | 8788 | 4772 | 7576 | 9543 | 6365 | 4315 | 5153 | 9086 | 3941 | 3858 | 30 | | | 45 | 8767 | 4810 | 7535 | 9620 | 6302 | 4430 | 5069 | 9240 | 3836 | 4049 | 15 | | 29 | 15 | 8746 | 4848
4886 | 7492 | 9696 | 6239 | 4544 | 4985 | 9392 | 3731 | 4240 | 61 0 | | | 15
30 | 8725
8704 | 4886 | 7450 | 9772
9848 | 6175 | 4659 | 4900 | 9545 | 3625 | 4431 | 45 | | | 45 | 8682 | 4924 | 7407
7364 | 9848 | 6111
6046 | 4773
4886 | 4814
4728 | 9697
9849 | 3518
3410 | 4621
4811 | 30
15 | | 30 | 0 | 8660 | 5000 | 7321 | 1.0000 | 5981 | 5000 | 4641 | 2.0000 | 3301 | 5000 | 60 0 | | - 00 | - | Dep. | Lat. | -00 0 | | | 3 | | | | | | | | | | | Course. | | | | Dis | t. 1. | Dis | l. 2 | Dis | t. 3. | Dist | l. 4. | Dis | t. 5. | | TABLE 3.—Traverse—Continued. | | Dist | . 1. | Dis | t. 2. | Dis | | Dis | | Dis | t. 5. | | |--------------------|---------------|--------------|--------------|--------------|-------------------|--------------|--------------|--------------|--------------|----------------|------------| | Course. | Lat. | Dep. | | | 0 / | | | | - | - | | | | | - | 0 / | | 30 15 | 0.8638 | 0.5038 | 1.7277 | 1.0075 | 2.5915 | 1.5113 | 3.4553 | 2.0151 | 4.3192 | 2.5189 | 59 45 | | 30 | 8616 | 5075 | 7233 | 0151 | 5849 | 5226 | 4465 | 0302 | 3081 | 5377 | 30 | | 45 | 8594 | 5113 | 7188 | 0226 | 5782 | 5339 | 4376 | 0452 | 2970 | 5565 | 15 | | 31 0 | 8572 | 5150 | 7142 | 0301 | 5715 | 5451 | 4287 | 0602 | 2858 | 5752 | 59 0 | | 15 | 8549 | 5188 | 7098 | 0375 | 5647 | 5563 | 4196 | 0751 | 2746 | 5939 | 45 | | 30 | 8526 | 5225 | 7053 | 0450 | 5579 | 5675 | 4106 | 0900 | 2632 | 6125 | 30 | | 32 0 | 8504
8480 | 5262
5299 | 7007
6961 | 0524 | 5511
5441 | 5786
5898 | 4014
3922 | 1049 | 2518
2402 | 6311
6496 | 58 0 | | 15 | 8457 | 5336 | 6915 | 0598
0672 | 5372 | 6008 | 3829 | 1197
1345 | 2286 | 6681 | 58 0
45 | | 30 | 8434 | 5373 | 6868 | 0746 | 5302 | 6119 | 3736 | 1492 | 2170 | 6865 | 30 | | 45 | 0.8410 | | | | 2.5231 | | | | 4. 2052 | 2.7049 | 15 | | 33 0 | 8387 | 5446 | 6773 | 0893 | 5160 | 6339 | 3547 | 1786 | 1934 | 7232 | 57 0 | | 15 | 8363 | 5483 | 6726 | 0966 | 5089 | 6449 | 3451 | 1932 | 1814 | 7415 | 45 | | 30 | 8339 | 5519 | 6678 | 1039 | | 6558 | 3355 | 2077 | 1694 | 7597 | 30 | | 45 | 8315 | 5556 | 6629 | 1111 | 4944 | 6667 | 3259 | 2223 | 1573 | 7779 | 15 | | 34 0 | 8290 | 5592 | 6581 | 1184 | 4871 | 6776 | 3162 | 2368 | 1452 | 7960 | 56 0 | | 15 | 8266 | 5628 | 6532 | 1256 | 4798 | 6884 | 3064 | 2512 | 1329 | 8140 | 45 | | 30 | 8241 | 5664 | 6483 | 1328 | 4724 | 6992 | 2965 | 2656 | 1206 | 8320 | 30 | | 45 | 8216 | 5700 | 6433 | 1400 | 4649 | 7100 | 2866 | 2800 | 1082 | 8500 | 15 | | 35 0 | 8192 | 5736 | 6383 | 1472 | 4575 | 7207 | 2766 | 2943 | 0958 | 8679 | 55 0 | | 15 | 0.8166 | | 1.0333 | | 2.4499 | | | | | 2.8857
9035 | 45
30 | | 30 | 8141 | 5807
5842 | 6282
6231 | 1614
1685 | 4423 | 7421
7527 | 2565
2463 | 3228
3370 | 0706
0579 | 9035 | 15 | | 36 0 | 8116
8090 | 5878 | 6180 | 1756 | 4347
4271 | 7634 | 2361 | 3511 | 0451 | 9389 | 54 0 | | . 15 | 8064 | 5913 | 6129 | 1826 | 4193 | 7739 | 2258 | 3652 | 0322 | 9565 | 45 | | 30 | 8039 | 5948 | 6077 | 1896 | 4116 | 7845 | 2154 | 3793 | 0193 | 9741 | 30 | | 45 | 8013 | 5983 | 6025 | 1966 | | 7950 | 2050 | 3933 | 0063 | 9916 | 15 | | 37 0 | 7986 | 6018 | 5973 | 2036 | 3959 | 8054 | 1945 | | 3.9932 | 3.0091 | 53 0 | | 15 | 7960 | 6053 | 5920 | 2106 | 3880 | 8159 | 1840 | 4212 | 9800 | 0365 | 45 | | 30 | 7934 | 6088 | 5867 | 2175 | 3801 | 8263 | 1734 | 4350 | 9668 | 0438 | 30 | | 45 | 0.7907 | 0.6122 | 1.5814 | 1.2244 | 2.3721 | 1.8367 | 3.1628 | 2.4489 | 3.9534 | 3.0611 | 15 | | 38 0 | 7880 | 6157 | 5760 | 2313 | 3640 | 8470 | - 1520 | 4626 | 9400 | 0783 | 52 0 | | 15 | 7853 | 6191 | 5706 | 2382 | | 8573 | 1413 | 4764 | 9266 | 0955 | 45 | | 30 | 7826 | 6225 | 5652 | 2450 | | 8675 | 1304 | 4901 | 9130 | 1126 | 30 | | 45 | 7799 | 6259 | 5598 | 2518 | 3397 | 8778 | 1195 | 5037 | 8994 | 1296 | 15 | | 39 0 | 7771 | 6293 | 5543 | 2586 | 3314 | 8880 | 1086 | 5173 | 8857 | 1466 | 51 0 | | 15 | 7744 | 6327 | 5488 | 2654 | 3232 | 8981 | 0976 | 5308 | 8720 | 1635 | 45
30 | | 30 | 7716 | 6361
6394 | 5432 | 2722 | | 9082
9183 | 0865 | 5443
5578 | 8581
8442 | 1804
1972 | 15 | | 40 0 | 7688
7660 | 6428 | 5377
5321 | 2789
2856 | 3065
2981 | 9284 | 0754
0642 | 5712 | 8302 | 2139 | 50 0 | | 15 | 0.7632 | | | 1. 2922 | | | | 2 5845 | | 3. 2306 | 45 | | 30 | 7604 | 6494 | 5208 | 2989 | | 9483 | 0416 | 5978 | 8020 | 2472 | 30 | | 45 | 7576 | 6528 | 5151 | 3055 | | 9583 | 0303 | 6110 | 7878 | 2638 | 15 | | 41 0 | 7547 | 6561 | 5094 | 3121 | 2641 | 9682 | 0188 | 6242 | 7735 | 2803 | 49 0 | | 15 | 7518 | 6593 | 5037 | 3187 | 2555 | 9780 | 0074 | 6374 | 7592 | 2967 | 45 | | 30 | 7490 | 6626 | 4979 | 3252 | 2469 | 9879 | 2.9958 | 6505 | 7448 | 3131 | 30 | | 45 | 7461 | 6659 | 4921 | 3318 | | 9976 | 9842 | 6635 | 7303 | 3294 | 15 | | 42 0 | 7431 | 6691 | 4863 | 3383 | 2294 | | 9726 | 6765 | 7157 | 3457 | 48 0 | | 15 | 7402 | 6724 | 4804 | 3447 | 2207 | 0171 | 9609 | 6895 | 7011 | 3618 | 45 | | 30 | 7373 | 6756 | 4746 | 3512 | 2118 | 0268 | 9491 | 7024 | 6864 | 3780 | 30 | | 45 | | | | | | | 2.9373 | 2.7152 | 3.6716 | 3.3940 | 15 | | 43 0 | 7314 | 6820 | 4627 | 3640 | | 0460 | 9254 | 7280 | 6568 | 4100 | 47 0
45 | | 15
30 | 7284
7254 | 6852
6884 | 4567
4507 | 3704
3767 | 1851 | 0555
0651 | 9135
9015 | 7407
7534 | 6419
6269 | 4259
4418 | 30 | | 30
45 | 7254 | 6915 | 4447 | 3830 | 1761
1671 | 0745 | 8895 | 7661 | 6118 | 4576 | 15 | | 44 0 | 7193 | 6947 | 4387 | 3893 | 1580 | 0840 | 8774 | 7786 | 5967 | 4733 | 46 0 | | 15 | 7163 | 6978 | 4326 | 3956 | | 0934 | 8652 | 7912 | 5815 | 4890 | 45 | | 30 | 7133 | 7009 | 4265 | 4018 | 1398 | 1027 | 8530 | 8036 | 5663 | 5045 | 30 | | 45 | 7102 | 7040 | 4204 | 4080 | 1306 | 1120 | 8407 | 8161 | 5509 | 5201 | 15 | | 45 0 | 7071 | 7071 | 4142 | | | 1213 | 8284 | 8284 | 5355 | 5355 | 45 0 | | The state of | Dep. | Lat. | | | THE REAL PROPERTY. | | | | | | | | | | | Course. | | | Dist. 1. Dist | | | U. 4. | Dist. 3. Dist. 4. | | | Dist. 5. | | | | TABLE 3.—Traverse—Continued. | | D: / | - Charles | LABLE | 11000 | - I rav | A Land Street | Conti | William William | | 4 10 | |
---|--------------|----------------|--------------|--------------|----------------|---------------|--------------|-----------------|--------------|----------------|------------| | Course. | Dist | | Dis | | Annual Control | t. 8. | - | t. 9. | | t. 10. | | | 0 / | Lat. | Dep. | 0 / | | 0 15 | E 0000 | 0 0060 | 6.9999 | 0 0205 | 7 0000 | 0 0340 | 2 0000 | 0 0303 | 0 0000 | 0.0436 | 100000 | | 30 | 9999 | 0.0202 | 9999 | 0.0303 | 9997 | 0698 | 9997 | 0.0393 | 9996 | 0.0430 | 30 | | 45 | 9995 | 0785 | 9994 | 0916 | 9993 | 1047 | 9992 | 1178 | 9996 | 1309 | 15 | | 1 0 | 9991 | 1047 | 9989 | 1222 | 9988 | 1396 | 9986 | 1571 | 9985 | 1745 | 89 0 | | 15 | 9986 | 1309 | 9983 | 1527 | 9981 | 1745 | 9979 | 1963 | 9976 | 2181 | 45 | | 30 | 9979 | 1571 | 9976 | 1832 | 9973 | 2094 | 9969 | 2356 | 9966 | 2618 | 30 | | 45 | 9972 | 1832 | 9967 | 2138 | 9963 | 2443 | 9958 | 2748 | 9953 | 3054 | 15 | | 2 0 | 9963 | 2094 | 9957 | 2443 | 9951 | 2792 | 9945 | 3141 | 9939 | 3490 | 88 0 | | 15
30 | 9954
9943 | 2356
2617 | 9946
9933 | 2748
3053 | 9938
9924 | 3141
3490 | 9931
9914 | 3533
3926 | 9923
9905 | 3926
4362 | 45
30 | | 45 | | | 6.9919 | | | 0.3838 | | | | 0.4798 | 15 | | 3 0 | 9918 | 3140 | 9904 | 3664 | 9890 | 4187 | 9877 | 4710 | 9863 | 5234 | 87 0 | | 15 | 9904 | 3402 | 9887 | 3968 | 9871 | 4535 | 9855 | 5102 | 9839 | 5669 | 45 | | 30 | 9888 | 3663 | 9869 | 4273
4578 | 9851 | 4884 | 9832 | 5494 | 9813 | 6105 | 30 | | 45 | 9872 | 3924 | 9850 | 4578 | 9829 | 5232 | 9807 | 5886 | 9786 | 6540 | 15 | | 4 0 | 9854 | 4185 | 9829 | 4883 | 9805 | 5581 | 9781 | 6278 | 9756 | 6976 | 86 0 | | . 15 | 9835 | 4447 | 9808 | 5188 | 9780 | 5929 | 9753 | 6670 | 9725 | 7411 | 45
30 | | 30 | 9815 | 4708
4968 | 9784 | 5492
5797 | 9753
9725 | 6277
6625 | 9723
9691 | 7061
7453 | 9692
9657 | 7846
8281 | 15 | | 5 0 | 9794
9772 | 5229 | 9760
9734 | 6101 | 9696 | 6972 | 9658 | 7844 | 9619 | 8716 | 85 0 | | 15 | 5 9748 | 0 5490 | 6.9706 | 0.6405 | 7. 9664 | 0. 7320 | 8. 9622 | 0. 8235 | 9.9580 | 0.9150 | 45 | | 30 | 9724 | 5751 | 9678 | 6709 | 9632 | 7668 | 9586 | 8626 | 9540 | 9585 | 30 | | 45 | 9698 | 6011 | 9648 | 7013
7317 | 9597 | 8015 | 9547 | 9017 | 9497 | 1.0019 | 15 | | 6 0 | 9671 | 6272 | 9617 | 7317 | 9562 | 8362 | 9507 | 9408 | 9452 | 0453 | 84 0 | | 15 | 9643 | 6532 | 9584 | 7621 | 9525 | 8709 | 9465 | 9798 | 9406 | 0887 | 45 | | 30 | 9614 | 6792 | 9550 | 7924 | 9486 | 9056 | | 1.0188 | 9357 | 1320 | 30 | | 7 0 | 9584 | 7052 | 9515
9478 | 8228
8531 | 9445
9404 | 9403
9750 | 9376
9329 | 0578
0968 | 9307
9255 | 1754
2187 | 83 0 | | 7 0 | 9553
9520 | 7312
7572 | 9440 | 8834 | | 1.0096 | 9329 | 1358 | 9200 | 2620 | 45 | | 30 | 9487 | 7832 | 9401 | 9137 | 9316 | 0442 | 9230 | 1747 | 9144 | 3053 | 30 | | 45 | 5. 9452 | 0.8091 | 6.9361 | 0.9440 | 7, 9269 | 1,0788 | 8.9178 | 1, 2137 | 9.9087 | 1.3485 | 15 | | 8 0 | 9416 | 8350 | 9319 | 9742 | 9221 | 1134 | 9124 | 2526 | 9027 | 3917 | 82 0 | | 15 | 9379 | 8610 | 9276 | 1.0044 | 9172 | 1479 | 9069 | 2914 | 8965 | 4349 | 45 | | 30 | 9341 | 8869 | 9231 | 0347 | 9121 | 1825 | 9011 | 3303 | 8902 | 4781 | 30 | | 45 | 9302 | 9127 | 9185 | 0649 | 9069 | 2170 | 8953 | 3691 | 8836 | 5212 | 15 | | 9 0 | 9261 | 9386 | 9138 | 0950 | 9015 | 2515 | 8892 | 4079 | 8769 | 5643 | 81 0 | | 15
30 | 9220
9177 | 9645 | 9090
9040 | 1252
1553 | 8960
8903 | 2859
3204 | 8830
8766 | 4467
4854 | 8700
8629 | 6074
6505 | 45
30 | | 45 | | 9903
1.0161 | 8989 | 1854 | 8844 | 3548 | 8700 | 5241 | 8556 | 6935 | 15 | | 10 0 | 9088 | 0419 | 8937 | 2155 | 8785 | 3892 | 8633 | 5628 | 8481 | 7365 | 80 0 | | 15 | 5.9042 | 1.0677 | 6.8883 | 1. 2456 | 7.8723 | 1.4235 | 8.8564 | 1.6015 | 9.8404 | 1.7794 | 45 | | 30 | 8995 | 0934 | 8728 | 2756 | 8660 | 4579 | 8493 | 6401 | 8325 | 8224 | 30 | | 11 d5 | 8947 | 1191 | 8772 | 3057 | 8596 | 4922 | 8421 | 6787 | 8245 | 8652 | 15 | | 11 0 | 8898 | 1449 | 8714 | 3357 | 8530 | 5265 | 8346 | 7173 | 8163 | 9081 | 79 0 | | 15 | 8847 | 1705 | 8655 | 3656 | 8463 | 5607 | 8271 | 7558 | 8079 | 9509 | 45 | | 30
45 | 8795
8743 | 1962
2219 | 8595
8533 | 3956
4255 | 8394
8324 | 5949
6291 | 8193
8114 | 7943
8328 | 7992
7905 | 9937
2.0364 | 15 | | 12 0 | 8689 | 2475 | 8470 | 4255 | 8252 | 6633 | 8033 | 8712 | 7815 | 0791 | 78 0 | | 15 | 8634 | 2731 | 8406 | 4852 | 8178 | 6974 | 7951 | 9096 | 7723 | 1218 | 45 | | 30 | 8578 | 2986 | 8341 | 5151 | 8104 | 7315 | 7867 | 9480 | 7630 | 1644 | 30 | | 45 | 5.8521 | 1.3242 | 6.8274 | 1.5449 | 7.8027 | 1.7656 | 8.7781 | 1.9863 | 9.7534 | 2.2070 | 15 | | 13 0 | 8462 | 3497 | 8206 | 5747 | 7950
7870 | 7996 | 7693 | 2.0246 | 7437 | 2495 | 77 0 | | 15 | 8403 | 3752 | 8137 | 6044 | 7870 | 8336 | 7604 | | 7338 | 2920 | 45 | | 30 | 8342 | 4007 | 8066 | 6341 | 7790 | 8676 | 7513 | 1010 | 7237 | 3345 | 30 | | 14 0 | 8281 | 4261 | 7994
7921 | 6638
6935 | 7707 | 9015 | 7421
7327 | 1392
1773 | 7134 | 3769 | 15 | | 14 0
15 | 8218
8154 | 4515
4769 | 7921 | 7231 | 7624
7538 | 9354
9692 | 7231 | 2154 | 7030
6923 | 4192
4615 | 76 0
45 | | 30 | 8089 | 5023 | 7770 | 7527 | 7452 | 2.0030 | 7133 | 2534 | 6815 | 5038 | 30 | | 45 | 8023 | 5276 | 7693 | 7822 | 7364 | 0368 | 7034 | 2914 | 6705 | 5460 | 15 | | 15 0 | 7956 | 5529 | 7615 | 7822
8117 | 7274 | 0706 | 6933 | 3294 | 6593 | 5882 | 75 0 | | CONTRACTOR OF THE PARTY | Dep. | Lat. | Dep. | | Dep. | Lat. | Dep. | Lat. | Dep. | Lat. | | | - 10/20 | Dist | | Dist | | Dis | | Dis | | | t. 10. | Course. | TABLE 3.—Traverse—Continued. | | 1 | Dist | . 6. | Dis | t. 7. | Dis | t. 8. | Dis | t. 9. | Dis | t. 10. | | 1 | |-------|-----------------|----------------|----------------|--------------|--------------|---------------|--------------|--------------|-----------------|--------------|----------------|-------|----| | Cours | e. | Lat. | Dep. | | | | 0 | 1 | | | | = (20.0) | | | | -03 - | 19 | | 0 / | | | 15 | 15
30 | | 1.5782 | | 1.8412 | | 2.1042 | | | | 2.6303 | 74 45 | | | | 45 | 7818
7747 | 6034
6286 | 7454
7372 | 8707
9001 | 7090
6996 | 1379
1715 | 6727
6621 | 4051
4430 | 6363
6246 | 6724
7144 | 30 | | | 16 | 0 | 7676 | 6538 | 7288 | 9295 | 6901 | 2051 | 6514 | 4807 | 6126 | 7564 | 74 (| | | | 15 | 7603 | 6790 | 7203 | 9588 | 6804 | 2386 | 6404 | 5185 | 6005 | 7983 | 45 | | | | 30 | 7529 | 7041 | 7117 | 9881 | 6706 | 2721 | 6294 | 5561 | 5882 | 8402 | 30 | | | 17 | 45 | 7454 | 7292 | | 2.0174 | 6606 | 3056 | 6181 | 5938 | 5757 | 8820 | 15 | | | 17 | 0
15 | 7378
7301 | 7542
7792 | 6941
6851 | 0466
0758 | 6504 | 3390
3723 | 6067
5952 | 6313
6689 | 5630
5502 | 9237
9654 | 73 (| | | | 30 | 7223 | 8042 | 6760 | 1049 | | 4056 | 5835 | 7064 | 5372 | 3.0071 | 30 | | | | 45 | 5.7144 | 1.8292 | 6.6668 | 2.1341 | 7.6192 | 2.4389 | 8.5716 | 2.7438 | 9.5240 | 3.0486 | 18 | | | | 0 | 7063 | 8541 | 6574 | 1631 | 6085 | 4721 | 5595 | 7812 | 5106 | 0902 | 72 (| | | | 15 | 6982 | 8790 | 6479 | 1921 | 5976 | 5053 | 5473 | 8185 | 4970 | 1316 | 45 | | | | 30
45 | 6899
6816 | 9038
9286 | 6383
6285 | 2211
2501 | 5866 | 5384
5715 | 5349
5224 | 8557
8930 | 4832
4693 | 1730
2144 | 30 | | | 19 | 0 | 6731 | 9534 | 6186 | 2790 | 5754
5641 | 6045 | 5097 | 9301 | 4552 | 2557 | 71 (| | | | 15 | 6645 | 9781 | 6086 | 3078 | 5527 | 6375 | 4968 | 9672 | 4409 | 2969 | 4 | | | | 30 | 6558 | 2.0028 | 5985 | 3366 | 5411 | 6705 | 4838 | 3.0043 | 4264 | 3381 | 30 | 0 | | 00 | 45 | 6471 | 0275 | 5882 | 3654 | 5294 | 7033 | 4706 | 0413 | 4118 | 3792 | 13 | | | 20 | 0
15 | 6382 | 0521
2.0767 | 5778 | 3941 | 5175 | 7362 | 4572 | 0782 | 3969 | 4202
3.4612 | 70 (| | | | 30 | 6200 | | 5567 | 4515 | | | 4300 | 1519 | 3667 | 5021 | 30 | | | | 45 | 6108 | | 5459 | 4800 | | 8343 | 4162 | 1886 | | 5429 | 18 | | | 21 | 0 | 6015 | 1502 | 5351 | 5086 | 4686 | 8669 | 4022 |
2253 | 3358 | 5837 | | 0 | | | 15 | 5920 | | 5241 | 5371 | 4561 | 8995 | 3881 | 2619 | 3201 | 6244 | 4 | | | | 30 | 5825 | 1990 | 5129 | 5655 | | 9320 | 3738 | 2985 | 3042 | 6650 | 30 | | | 22 | 45 | 5729
5631 | 2233
2476 | 5017
4903 | 5939
6222 | | 9645
9969 | 3593
3447 | 3350
3715 | 2881
2718 | 7056
7461 | 68 | 0 | | 24 | 15 | 5532 | 2719 | 4788 | 6505 | 4175 | 3.0292 | 3299 | 4078 | | 7855 | 4 | 5 | | | 30 | 5433 | 2961 | 4672 | 6788 | 3910 | 0615 | 3149 | 4442 | 2388 | 8268 | 30 | | | | 45 | | 2.3203 | 6.4554 | 2.7070 | 7.3776 | 3.0937 | 8.2998 | | 9.2220 | 3.8671 | 1. | | | 23 | 0 | 5230 | | | 7351 | 3640 | | | 5166 | | 9073 | | 0 | | | 15
30 | 5127
5024 | 3685
3925 | 4315
4194 | 7632
7912 | | 1580
1900 | | 5527
5887 | 1879
1706 | 9474
9875 | 30 | | | | 45 | 4919 | | 4072 | 8192 | | | | 6247 | 1531 | 4. 0275 | 1. | | | 24 | 0 | 4813 | | 3948 | | | 2539 | | 6606 | | 0674 | | 0 | | | 15 | 4706 | 4643 | 3823 | 8750 | 2941 | 2858 | 2059 | | 1176 | 1072 | 4. | 5 | | | 30 | 4598 | | 3697 | 9029 | 2797 | 3175 | 1897 | 7322 | 0996 | 1469 | 3 | | | 25 | 45 | 4489 | | | | | 3493
3809 | 1733
1568 | 7679
8036 | | 1866
2262 | 65 | | | | 0
15 | 4378
5 4267 | 5357
2.5594 | | | 2505 7.2356 | 3 4125 | 8 1401 | | 9.0446 | 4. 2657 | 4 | 0 | | | 30 | 4155 | | 3181 | 3.0136 | 2207 | 4441 | 1233 | 8746 | 0259 | 3051 | 3 | | | | 45 | 4042 | 6067 | 3049 | 0411 | 2056 | 4756 | 1063 | 9100 | 0070 | 3445 | 1. | 5 | | 26 | 0 | 3928 | | | | 1904 | 5070 | | | 8.9879 | 3837 | | 0 | | | 15 | 3812 | | 2781 | 0960 | | | | 9806
4. 0158 | | 4229 | 4. | C | | | $\frac{30}{45}$ | 3696
3579 | | | 1234
1507 | | | | 0509 | | 4620
5010 | 30 | | | 27 | 0 | 3460 | | | | 1438
1281 | 6319 | | 0859 | | 5399 | | 0 | | | 15 | 3341 | 7472 | 2231 | 2051 | 1121 | 6630 | 0012 | 1209 | 8902 | 5787 | 4 | 5 | | | 30 | 3221 | 7705 | | 2322 | 0061 | 6940 | 7.9831 | 1557 | 8701 | 6175 | 3 | | | 00 | 45 | 5.3099 | | 6. 1949 | | | 3.7249 | | | | 4.6561 | 62 | | | 28 | 0
15 | 2977
2853 | 8168
8399 | | | 0636 | 7558
7866 | 9465
9280 | | 8295
8089 | 6947
7332 | 62 4 | 0 | | | 30 | 2729 | | | 3401 | | | | | 7882 | 7716 | 3 | | | | 45 | 2604 | | 1371 | 3669 | 0138 | 8479 | 8905 | 3289 | 7673 | 8099 | 1. | 5 | | 29 | 0 | 2477 | 9089 | 1223 | 3937 | 6. 9970 | 8785 | 8716 | 3633 | 7462 | 8481 | 61 | 0 | | | 15 | 2350 | | 1075 | 4203 | 9800 | 9090 | 8525 | 3976 | | 8862 | 4. | | | | 30
45 | 2221
2692 | | | 4470
4735 | 0020 | | 8332
8138 | | | 9242
9622 | 30 | | | 30 | 40 | | 3.0000 | | 5000 | | 1 4 0000 | | | | 5. 0000 | | 0 | | - 50 | _ | Dep. | Lat. | | _ | | 1 | | Dep. | | | t. 7. | Dist. | | Dist | | | t. 10. | Cours | e. | | | | 1748 | v. V. | 1 118 | v | 1 1130 | | 1 1/130 | | 1 112 | v. 10. | | | Table 3.—Traverse—Continued. | - | Dist | | Dis | t. 7. | Dis | t. 8. | Dis | t. 9. | | t. 19. | | | |---------|--------------|-----------------|-----------------|--------------|-----------------------|-----------------|----------------|-----------------|----------------|------------------------------|-------|----------| | Course. | - | Dep. | Lat. | Dep. | Lat. | Dep. | Lat. | Dep. | Lat. | Dep. | | | | 0 1 | 13001 | Бор. | | Dop. | 25000 | - op. | | | | | 0 | 1 | | 30 15 | 5. 1830 | 3.0226 | 6.0468 | 3.5264 | 6.9107 | 4.0302 | 7.7745 | 4.5340 | 8.6384 | 5.0377 | 59 | 45 | | 30 | 1698 | 0452 | 0314 | 5528 | 8930 | 0603 | 7547 | 5678 | 6163 | 0754 | | 30 | | 45 | 1564 | 0678 | 0158 | 5791 | 8753 | 0903 | 7347 | 6016 | 5941 | 1129 | | 15 | | 31 0 | 1430 | 0902 | 0002 | 6053 | 8573 | 1203 | 7145 | 6353 | 5717 | 1504 | 59 | 0 | | . 15 | 1295 | 1126 | 5.9844 | 6314 | 8393 | 1502 | 6942 | 6690 | 5491 | 1877 | | 45 | | 30 | 1158 | 1350 | 9685 | 6575 | 8211 | 1800 | 6738 | 7025 | 5264 | 2250 | | 30 | | 32 0 | 1021
0883 | 1573
1795 | 9525
9363 | 6835
7094 | 8028
7844 | 2097
2394 | 6532
6324 | 7359
7693 | 5035
48)5 | 2621
2992 | 58 | 15 | | 15 | 0744 | 2017 | 9201 | 7353 | 7658 | 2689 | 6116 | 8025 | 4573 | 3361 | 90 | 45 | | 30 | 0603 | 2238 | 9037 | 7611 | 7471 | 2984 | 5905 | 8357 | 4339 | 3730 | | 30 | | 45 | 5. 0462 | | 5.8873 | | | 4.3278 | | | | 5. 4097 | | 15 | | 33 0 | 0320 | 2678 | 8707 | 8125 | 7094 | 3571 | 5480 | 9018 | 3867 | 4464 | 57 | 0 | | 15 | 0177 | 2898 | 8540 | 8381 | 6903 | 3863 | 5266 | 9346 | 3629 | 4829 | | 45 | | 30 | 0033 | 3116 | 8372 | 8636 | 6711 | 4155 | 5050 | 9674 | 3389 | 5194 | | 30 | | 45 | 4.9888 | 3334 | 8203 | 8890 | 6518 | 4446 | | 5.0001 | 3147 | 5557 | | 15 | | 34 0 | 9742 | 3552 | 8033 | 9144 | 6323 | 4735 | 4613 | 0327 | 2904 | 5919 | 56 | 0 | | 30 | 9595 | 3768 | 7861 | 9396 | 6127 | 5024 | 4393 | 0652
0977 | 2659
2413 | 6280
6641 | | 45
30 | | 45 | 9448
9299 | 3984
4200 | 7689
7515 | 9648
9900 | 5930
5732 | 5312
5600 | 4171
3948 | 1300 | 2165 | 7000 | | 15 | | 35 0 | 9149 | 4415 | | 4.0150 | 5532 | 5886 | 3724 | 1622 | 1915 | 7358 | 55 | 0 | | 15 | 4. 8998 | | 5. 7165 | 4.0400 | | 4. 6172 | | | | 5. 7715 | 00 | 45 | | 30 | 8847 | 4842 | 6988 | 0649 | 5129 | 6456 | 3270 | 2263 | 1412 | 8070 | | 30 | | 45 | 8694 | 5055 | 6810 | 0897 | 4926 | 6740 | 3042 | 2582 | 1157 | 8425 | | 15 | | 36 0 | 8541 | 5267 | 6631 | 1145 | 4721 | 7023 | 2812 | 2901 | 0902 | 8779 | 54 | 0 | | 15 | 8387 | 5479 | 6451 | 1392 | 4516 | 7305 | 2580 | 3218 | 0644 | 9131 | | 45 | | 30 | 8231 | 5689 | 6270 | 1638 | 4309 | 7586 | 2347 | 3534 | 0386 | 9482 | | 30 | | 37 0 | | 5899 | 6088 | 1883 | 4100 | 7866 | 2113 | 3849 | 0125 | 9832 | ** | 15 | | 37 0 | 7918 | 6109 | 5904 | 2127 | 3891 | 8145 | 1877 | | 7. 9864 | 6.0182 | 53 | 0 | | 30 | 7760
7601 | 6318 | 5720
5535 | 2371
2613 | 3680 | 8424
8701 | 1640
1402 | 4476 | 9600
9335 | 0529 | | 45
30 | | 45 | | 6526
3. 6733 | 5 5348 | 4. 2855 | $\frac{3468}{6.3255}$ | 4.8977 | | 4789
5. 5100 | | 0876 6.1222 | | 15 | | 38 0 | | 6940 | 5161 | 3096 | 3041 | 9253 | 0921 | 5410 | 8801 | 1566 | 52 | 0 | | 15 | 7119 | 7146 | 4972 | 3337 | 2825 | 9528 | 0679 | 5718 | 8532 | 1909 | | 45 | | 30 | 6956 | 7351 | 4783 | 3576 | 2609 | 9801 | 0435 | 6026 | 8261 | 2251 | | 30 | | 45 | | 7555 | 4592 | 3815 | | 5.0074 | 0190 | 6333 | 7988 | 2592 | | 15 | | 39 0 | | 7759 | 4400 | 4052 | 2172 | | 6.9943 | 6639 | 7715 | 2932 | 51 | 0 | | 15 | | 7962 | 4207 | 4289 | 1951 | 0616 | 9695 | 6943 | 7439 | 3271 | | 45 | | 30 | | 8165 | 4014 | 4525 | 1730 | 0886 | 9446 | 7247 | 7162 | 3608 | | 30 | | 40 0 | | 8366 | 3819 | 4761 | 1507 | 1155 | 9196 | 7550 | 6884 | 3944 | ** | 15 | | 15 | | | 3623 | 4995 | 6 1050 | 1423
5. 1690 | 8944
6.8691 | 7851 | 6604
7.6323 | 42 ⁷ 9
6. 4612 | 50 | 0
45 | | 30 | | 8967 | 3228 | 5461 | 0.1033 | 1956 | 8437 | 8450 | 6041 | 4945 | | 30 | | 45 | 5454 | 9166 | 3030 | 5693 | 0605 | 2221 | 8181 | 8748 | 5756 | 5276 | | 15 | | 41 0 | 5283 | 9364 | 2830 | 5924 | 0377 | 2485 | 7924 | 9045 | 5471 | 5606 | 49 | 0 | | 15 | 5110 | 9561 | 2629 | 6154 | 0147 | 2748 | 7666 | 9341 | 5184 | 5935 | 0 00 | 45 | | 30 | 4937 | 9757 | 2427 | 6383 | 5.9916 | 3010 | 7406 | 9636 | 4896 | 6262 | | 30 | | 42 0 | 4763 | 9953 | 2224 | 6612 | 9685 | 3271 | 7145 | 9929 | 4606 | 6588 | 5 8 | 15 | | 42 0 | 4589 | | 2020 | 6839 | 9452 | 3530 | 6883 | 6.0222 | 4314 | 6913 | 48 | 0 | | 30 | | 0342 | 1815 | 7066 | 9217 | 3789 | 6620 | 0513 | 4022 | 7237 | | 45 | | 45 | 4 4050 | 4 0799 | 1609
5. 1403 | 4 7510 | 5 8740 | 4047
5. 4304 | 6355 | 6 1002 | 3728
7.3432 | 7559
6. 7880 | | 30 | | 43 0 | 3881 | 0920 | 1195 | 7740 | 8508 | 4560 | 5822 | 1380 | 3135 | 8200 | 47 | 15 | | 15 | | 1111 | 0986 | 7963 | 8270 | 4815 | 5553 | 1666 | 2837 | 8518 | 41 | 45 | | 30 | 3522 | 1301 | 0776 | 8185 | 8030 | 5068 | 5284 | 1952 | 2537 | 8835 | 12 | 30 | | 45 | 3342 | 1491 | 0565 | 8406 | 7789 | 5321 | 5013 | 2236 | 2236 | 9151 | THE . | 15 | | 44 0 | 3160 | 1680 | 0354 | 8626 | 7547 | 5573 | 4741 | 2519 | 1934 | 9466 | 46 | 0 | | 15 | 2010 | 1867 | 0141 | 8845 | 7304 | 5823 | 4467 | 2801 | 1630 | 9779 | 1750 | 45 | | 30 | 2100 | | 4. 9928 | 9064 | 7060 | 6073 | 4193 | 3082 | 1325 | 7.0091 | 1 6 | 30 | | 45 0 | | 2241 | 9713 | 9281 | 6815 | 6321 | 3917 | 3361 | 1019 | 0401 | | 15 | | 40 | - 100 | 2426 | 9497 | 9497 | 6569 | 6569 | 3640 | 3640 | | 0711 | 45 | 0 | | I Vale | Dep. | Lat. | Dep. | Lat. | Dep. | Lat. | Dep. | | Dep. | Lat. | Cour | rea | | 1 | Dist | . 6. | Dis | 1.7. | Dis | t. 8. | Dis | t. 9. | Dis | t. 10. | Coan | .50. | Table 4.—Condensed traverse table for cruising. | De-
grees. | Latitude. | Departure. | | De-
grees. | Latitude. | Departure. | | |---|------------|------------|----------------|---------------|------------|------------|--------------| | 0 | 1.000 | 0.000 | 90 | 23 | 0.920 | 0.391 | 67 | | 1 | 1.000 | .017 | 89
88
87 | 24 | .913 | . 497 | 66 | | 1
2
3
4
5
6
7
8
9 | .999 | . 035 | 88 | 25 | . 906 | . 423 | 65 | | 3 | .999 | . 052 | 87 | 26 | . 899 | . 438 | 64 | | 4 | .998 | .070 | 86 | 27 | .891 | . 454 | 63 | | 5 | . 996 | . 087 | 85 | 28 | . 883 | . 470 | 62 | | 6 | .995 | .104 | 84 | 29 | .875 | . 485 | 61 | | 7 | . 992 | .122 | 83 | 30 | . 866 | . 500 | 60 | | 8 | .990 | . 139 | 82 | 31 | .857 | . 515 | 59 | | | .988 | . 156 | 81 | 32 | .848 | . 530 | 58 | | 10 | . 985 | .174 | 80 | 33 | . 839 | . 545 | 57 | | 11 | . 982 | .191 | 79 | 34 | . 829 | . 559 | 56 | | 12 | . 978 | . 208 | 78
77 | 35 | .819 | . 574 | 55 | | 13 | . 974 | . 225 | 77 | 36 | . 809 | . 588 | 54 | | 14 | .970 | . 242 | 76 | 37 | .799 | . 602 | 53 | | 15 | . 966 | . 259 | 75 | 38 | . 788 | .616 | 52 | | 16 | . 961 | . 276 | 74 | 39 | .777 | . 629 | 51 | | 17 | . 956 | . 292 | 73
72 | 40 | . 766 | . 643 | 50 | | 18 | . 951 | .309 | 72 | 41 | .755 | . 656 | 49 | | 19 | . 946 | . 326 | 71 | 42 | .743 | . 669 | 48 | | 20 | .940 | .342 | 70 | 43 | .731 | . 682 | 47 | | 21 | . 934 | .358 | 69 | 44 | .719 | . 695 | 46 | | 22 | . 927 | .375 | 68 |
45 | .707 | . 707 | 45 | | | Departure. | Latitude. | De-
grees. | | Departure. | Latitude. | De-
grees | Table 5.—Surface measuring on slopes. [Increase of distance to be added to one 66' chain of surface measurement to give one chain of horizontal measurement. Approximate; for use in cruising.] | Slope. | Grade. | Equiva-
lent verti-
cal angle. | Increase of
distance
per 66'
chain (ex-
secant).1 | |------------|-----------|--------------------------------------|---| | Level | Per cent. | • | Links. | | Devel | 1 5 | 3.0 | 0.1 | | Gentle | | 5. 5 | .5 | | | 15 20 | 8. 5
11. 5 | $\frac{1.1}{2.0}$ | | Moderate | 30 | 16.5 | 4.4 | | | 40 | 22.0 | 7.8 | | Steep | 30 | 26.5 | 11.7 | | | 60 | 31.0 | 16.6 | | | 70 | 35.0
38.5 | 22.1
28.0 | | Very steep | 90 | 42.0 | 34.6 | | | 100 | 45.0 | 41.4 | The per cent of grade is determined by grademeter or hypsometer. Vertical angles are read by clinometer, Abney level, or transit. 1 The exsecant is a ratio of links per 100 links (-1 chain), and therefore the figures in this column also show feet per 100 feet, or yards per 100 yards, etc. ### BLAZES AND MARKS ON TREES. Trees should never be blazed nor marked upon random or trial lines nor upon other preliminary or temporary surveys, where they may be misleading in the future. A survey line is blazed in order that it may be located or retraced between corners which are at each end of the line. Corners and intersections are witnessed by marks. Thus the ax scars used in surveying may be either blazes or marks, one term being applied to a line and the other to a point. In some books on surveying these terms have been used interchangeably or carelessly, but it is better to make the distinction in the Forest Service, where surveying is done for so many different purposes. A survey line is blazed in the following manner: Trees which are on the line are blazed fore and back, meaning that the surveyor took a foresight when running toward the tree and a backsight when running away from it, on the same straight line. Such a tree is called a line tree and is spoken of as being line-blazed. Trees standing near the line, within 50 links on either side, are blazed on two sides quartering toward the line. Blazes for roads need not be permanent because the subsequent construction of the highway fixes the line. Property lines should be permanently blazed—that is, through the bark to the wood, leaving a scar which may be recognized or found as long as the tree stands. Blazes should be the width of an ax blade, about 6 inches long, and placed breast high. When it is probable that the blazes will be used when there is deep snow upon the ground, they should be placed high enough to be seen, or the trees may be given a second blazing at a higher point after the deep snow renders this convenient. It is often desirable, as in the case of trails, that Forest Service blazes should be distinguished from land office blazes or from private surveys, and, therefore, a distinctive blaze has been adopted for the Forest Service. This is the width of an ax blade, about 6 inches long, with a horizontal notch at the top of the scar. The Forest Service has also adopted a distinctive mark to indicate the intersection of one of its lines with a land office line and to show the approximate distance to the nearest land office corner. Thus, when a road or trail crosses a section line a tree may be marked in such a manner that any Forest officer may recognize it, and will know the direction and approximate distance to the nearest section or quartersection corner. This mark is made in the following manner: A tree near the point of intersection is barked to the wood, about 8 by 10 inches, on the side facing the corner. A letter C with horizontal crossbars is then scribed upon the scar. A horizontal bar will indicate that the distance to the corner is about 10 chains, and each half bar will indicate a distance of about 5 chains. For example, the intersection marks may read as follows: It will sometimes happen that an intersection tree can not be marked facing the corner and at the same time have the mark visible from the trail or road. In such cases the mark will face the corner and an \times will be cut, through the bark, on the side toward the highway. The letter \times is a recognized symbol, indicating the crossing of lines or to indicate that a trail crosses a stream at this point. It is often useful in the latter case when there is snow on the ground, as it shows that the stream must be forded, and that the trail will be found on the other side. It will, therefore, be used for both purposes mentioned, and its meaning will never be misunderstood. The letter \times is often used to indicate that the trail forks at this point, and is useful when there is snow upon the ground. It will frequently happen that a land-office corner will be accidentally found, and the distance from it to the point of intersection will be immediately determined by pacing. This is sufficiently accurate to warrant the marking of an intersection witness tree, as stated above, as the distance is only presumed to be approximate. Whether the line is paced or measured, the ranger will make a record in his notebook, describing the land-office corner and the distance to the intersection, and the marks which he placed at that point. The following is a specimen of such a record: #### SPECIMEN RECORD. October 4, 1912, 10 a. m. I found the quarter-corner between sections 15 and 16, T. 8 N., R. 21 W. Both witness trees were standing, but the stake had fallen over. The rotted point was found in the ground and I reset the stake above it, placing a mound of stones about it to hold it in position. From this corner I paced south, following the original blazes, 23 chains, to the intersection of the new Forest Service trail between Wild Cat Ranger Station and Alta Lookout Point. Established for witness red fir 20 inches in diameter, on north side of trail, 40 links distant from intersection, marked € on north side and X on south side. October 4, 6 p. m. Made a record of the above information on the atlas sheet. JOHN R. UNDERWOOD, Ranger. It is important that any geographic information which may be used to correct the atlas sheets, and thus lead to the preparation of accurate forest maps, should be placed upon the sheets which are kept for that purpose by each forest officer. All of such corrections or additional data should be transmitted to the supervisor as he may require them, but certainly in ample time for him to include them in the corrected folio which he sends to the Forester on February 1 of each year. Other marks used by the Forest Service are described under "Ranger station surveys" and "Forest home- stead surveys." FIELD NOTES. Notes of survey should show exactly what was done in the field, including the errors of courses or measurements. In resurveying lines, it is no reflection on the survey party if it does not "check up" exactly, but it is rather expected that a trial or "random line" will not strike a corner nor the measurement prove exactly as "returned" by the original surveyor. It is important, however, to know what the error or difference is discovered to be. When a notebook contains the field notes of only one survey, the purpose of which the survey was made should be plainly marked on the cover as well as on the first page. If it contains the notes of more than one survey, the title of a survey should be written at the top of each page, and the book should be indexed on the first page. Each book should be numbered and paged. When the notes for a survey do not follow in regular order in a notebook be sure to refer to the page where the continuation can be found and at that point refer back by page number to the former notes. It is a good plan to make numerous explanatory sketches on the right-hand pages of the notebooks, leaving nothing to the memory, and particularly the direction of the flow of streams should be shown by arrows. If the surveyor will always imagine that he might stop work at any moment, and some one else may be obliged to continue the survey, and will keep his notes so clearly that this would be easy, then they are apt to be a reiable record. Never erase notes—cross them out and mark them "abandoned." Field notes should never be crowded into a notebook or be written as a continuous recital, but should be tabulated clearly that they may be readily platted by any surveyor or draftsman. A good form for keeping notes is here shown. # SPECIMEN NOTES. National Forest. Resurvey of east boundary of sec. 24, T. 19 N., R. 14 E. June 16, 1912. Weather clear. I corrected both aneroids at the benchmark at which has an elevation of ft. Made camp 5.30 p. m. Sec. 24, T. 19 N., R. 14 E. 7 p. m. Camp barometer reads 4,850'. Field barometer reads 4,860'. At 9 p. m. observed *Polaris* and find the variation at camp to be 19° east. Resurvey of east boundary of sec. 24, T. 19 N., R. 14 E., in June 17, 1912. Weather clear. 7 a. m. Camp barometer 4,850'. Field barometer 4,860'. | , and a series of the o | , |
--|-------------| | the National Forest. The original survey was | | | 1872, with variation 18½° east. Allowing for the reported | d increase, | | the variation should be about 19° 05'. | Elev. | | From the southeast corner of sec. 24 | 4,780' | | Ran north, var. 19° east. | | | 10.00 ch. near 36" yellow pine | 4,720' | | 20.00 in thicket of firs | 4, 680' | | 24. 50 creek, 4 links wide, flows SW | 4,660 | | 30.00 at foot of steep slope | | | 40.00 on steep sidehill, SE | 4, 920 | | 40.23 to a point 15 links west of 1 corner on east s | | | sec. 24. | | | On this line the original blazes w | ere | | almost obliterated, and I made n | iew | | blazes. | | | From the 4 corner on east side of sec. 24. | | | Ran north, var. 19° east. | | | 10. 00 ch. enter burned area | 5, 050' | | 13. 60 top of hill NE. and SW | 5, 120' | | From this point I take vertical angles on some high point | nts | | in unsurveyed T. 19 N., R. 15 E., as follows: | Elev | | N. 24½ E. 3 miles, vertical angle 1½° | | | N. 37½ E. 2½ miles, vertical angle ½° | | | T 000 T 0 '1 1 1 120 | | N. 89 $^{\circ}$ E. ? miles, vertical angle 1_{4}^{2} $^{\circ}$... S. 43 $_{2}^{1}$ E. 4 miles, vertical angle 1° ... 5, 503 $^{\prime}$ S. 10 $^{\circ}$ E. 3 $_{4}^{1}$ miles, vertical angle $_{4}^{2}$ $^{\circ}$... 5, 355 $^{\prime}$ 7 p. m. Camp barometer, 4,870'. Field barometer, 4,880'. # FIELD NOTES. OF THE ROAD, STREAM, OR SUMMIT MEANDERS EGE OF The method of keeping meander notes differs from the above. Each course begins a new tally, and any intermediate distances are entered in a third column. The second column may then be added to determine the total distance surveyed, viz: National Forest. Meanders in unsurveyed T. 19 N., R. 15 E. June 18, 1912. Weather cloudy | 7 a. m. Camp barometer, 4,880'.
Field barometer, 4,890'. | | |---|----| | | | | | | | From a point 13.60 ch. north of \(\frac{1}{4} \) cor. on the east side | of | | sec. 24. | | | Ran along summit, var. 19° east. | | | N. 24 E. 9.00 ch. at 6.00 leave burn | 0' | | N. 39½ E. 17.50 at 3.00 trail N. and S 5, 12 | 5' | | N. 48½ E. 11.20 | 5' | | S. 86 E. 14.60 highest point on summit | 0' | | At this point the summit divides; one branch bear- | | | ing SE, and the other SW. | | | Continuing the meanders: | | | Ran down gulch, between the two divides. | | | Var. 19° east. | | | N. 89 E. 18.00 ch. spring | 0' | | N. 75 E. 15.00 meadow, 2 acres | 5' | | S. 83 E. 4.00 falls, 10 feet | 5' | | N. 80 E. 22.20 at 18.00 small tributary from the south . 4,90 | 0' | | N. 86 E. 9.00 at 2.30 the notice of the Morning Star | | | mining claim bears S. 1.50; at 3.40 | | | mining cabin | 5 | etc., etc. Table 6.—Difference of altitude between the "station" occupied by the surveyor, of which the altitude is known, and a higher distant object whose altitude is desired. (Difference of altitude in feet-add to station altitude.) | Verti-
cal | | | 4) | Distar | ice to ol | oject, in | miles. | | 1 | | |------------------------------------|-----|-------|-------|--------|-----------|-----------|--------|--------|--------|-------| | angle
above
a level
line. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | | 0°00′ | 5 | 7 | 10 | 14 | 19 | 25 | 33 | 41 | 51 | 62 | | 15 | 28 | 53 | 79 | 106 | 134 | 163 | 194 | 225 | 258 | 292 | | 30 | 51 | 99 | 148 | 198 | 249 | 301 | 356 | 410 | 466 | 523 | | 45 | 74 | 145 | 217 | 290 | 365 | 440 | 517 | 594 | 673 | 753 | | 1°00′ | 97 | 191 | 286 | 383 | 480 | 578 | 678 | 778 | 880 | 984 | | 15 | 120 | 237 | 356 | 475 | 595 | 716 | 839 | 963 | 1,088 | 1,214 | | 30 | 143 | 283 | 425 | 567 | 710 | 855 | 1,001 | 1,147 | 1,295 | 1,445 | | 45 | 166 | 330 | 494 | 659 | 826 | 993 | 1,162 | 1,332 | 1,503 | 1,675 | | 2°00' | 189 | 376 | 563 | 752 | 941 | 1,131 | 1,324 | 1,516 | 1,710 | 1,906 | | 15 | 212 | 422 | 632 | 844 | 1,056 | 1,270 | 1,485 | 1,701 | 1,918 | 2,137 | | 30 | 235 | 468 | 702 | 936 | 1,172 | 1,408 | 1,647 | 1,885 | 2,126 | 2,367 | | 45 | 259 | 514 | 771 | 1,028 | 1,287 | 1,547 | 1,808 | 2,070 | 2,334 | 2,598 | | 3°00′ | 282 | 560 | 840 | 1,121 | 1,403 | 1,685 | 1,970 | 2,255 | 2,541 | 2,829 | | 15 | 305 | 607 | 909 | 1,213 | 1,518 | 1,824 | 2,132 | 2,440 | 2,749 | 3,060 | | 30 | 328 | 653 | 979 | 1,306 | 1,634 | 1,963 | 2,294 | 2,625 | 2,957 | 3,291 | | 45 | 351 | 699 | 1,048 | 1,398 | 1,749 | 2,101 | 2,455 | 2,810 | 3,166 | 3,523 | | 4°00′ | 374 | 745 | 1,118 | 1,491 | 1,865 | 2,240 | 2,617 | 2,995 | 3,374 | 3,754 | | 15 | 397 | 792 | 1,187 | 1,583 | 1,981 | 2,379 | 2,780 | 3,180 | 3,582 | 3,986 | | 30 | 420 | 838 | 1,257 | 1,676 | 2,097 | 2,518 | 2,942 | 3,365 | 3,791 | 4,217 | | 45 | 444 | 884 | 1,326 | 1,769 | 2,213 | 2,657 | 3,104 | 3,551 | 4,000 | 4,449 | | 5°00′ | 467 | 931 | 1,396 | 1,862 | 2,329 | 2,797 | 3, 267 | 3,737 | 4, 208 | 4,681 | | 15 | 490 | 977 | 1,466 | 1,955 | 2,445 | 2,936 | 3, 429 | 3,922 | 4, 418 | 4,914 | | 30 | 513 | 1,024 | 1,535 | 2,048 | 2,561 | 3,075 | 3, 592 | 4,108 | 4, 627 | 5,146 | | 45 | 537 | 1,070 | 1,605 | 2,141 | 2,677 | 3,215 | 3, 755 | 4,294 | 4, 836 | 5,379 | | 6°00′ | 560 | 1,117 | 1,675 | 2,234 | 2,794 | 3,355 | 3,918 | 4, 481 | 5,046 | 5,612 | | 15 | 583 | 1,164 | 1,745 | 2,327 | 2,910 | 3,495 | 4,081 | 4, 667 | 5,255 | 5,845 | | 30 | 607 | 1,210 | 1,815 | 2,420 | 3,027 | 3,634 | 4,244 | 4, 854 | 5,465 | 6,078 | | 45 | 630 | 1,257 | 1,885 | 2,514 | 3,144 | 3,775 | 4,407 | 5, 040 | 5,675 | 6,311 | | 7°00′ | 653 | 1,304 | 1,955 | 2,607 | 3,261 | 3,915 | 4,571 | 5, 227 | 5,886 | 6,545 | | 15 | 677 | 1,350 | 2,025 | 2,701 | 3,378 | 4,055 | 4,735 | 5, 415 | 6,096 | 6,779 | | 30 | 700 | 1,397 | 2,095 | 2,795 | 3,595 | 4,196 | 4,899 | 5, 602 | 6,307 | 7,013 | | 45 | 724 | 1,444 | 2,166 | 2,888 | 3,612 | 4,337 | 5,063 | 5, 790 | 6,518 | 7,248 | | 8°00′ | 747 | 1,491 | 2,236 | 2,982 | 3,729 | 4, 477 | 5,227 | 5,977 | 6,729 | 7,483 | | 15 | 771 | 1,538 | 2,307 | 3,076 | 3,847 | 4, 618 | 5,392 | 6,166 | 6,941 | 7,718 | | 30 | 794 | 1,585 | 2,377 | 3,170 | 3,964 | 4, 760 | 5,557 | 6,354 | 7,153 | 7,953 | | 45 | 818 | 1,632 | 2,448 | 3,265 | 4,082 | 4, 901 | 5,722 | 6,542 | 7,365 | 8,189 | Table 6.—Difference of altitude between the "station" occupied by the surveyor, of which the altitude is known, and a higher distant object whose altitude is desired—Continued. [Difference of altitude in feet-add to station altitude.] | Verti- | | | | Distar | ice to ol | oject, in | miles. | | | | |------------------------------------|----------------------------------|----------------------------------|--------------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|---------------------------------------| | angle
above
a level
line. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | | 9°00′
15
30
45 | 841
865
889
912 | 1,680
1,727
1,774
1,821 | 2,519
2,590
2,661
2,732 | 3,359
3,454
3,548
3,643 | 4,200
4,319
4,437
4,556 | 5,043
5,185
5,327
5,469 | 5,887
6,053
6,218
6,384 | 6,731
6,920
7,109
7,299 | 7,577
7,790
8,003
8,217 | 8, 425
8, 661
8, 895
9, 135 | | 10°00′
15
30
45 | 936
960
984
1,007 | 1,869
1,917
1,964
2,012 | 2,803
2,874
2,946
3,017 | 3,738
3,833
3,928
4,024 | 4,674
4,793
4,912
5,031 | 5,611
5,754
5,897
6,040 | 6,550
6,717
6,883
7,050 | 7,489
7,679
7,870
8,061 | 8,430
8,644
8,858
9,073 | 9, 372
9, 610
9, 848
10, 083 | | 11°00′
15
30
45 | 1,031
1,055
1,079
1,103 | 2,060
2,108
2,155
2,204 | 3,089
3,161
3,233
3,305 | 4,119
4,215
4,311
4,407 | 5,151
5,270
5,390
5,510 | 6,183
6,327
6,470
6,615 |
7,217
7,385
7,553
7,721 | 8,252
8,443
8,635
8,827 | 9,288
9,504
9,719
9,935 | | | 12°00′
15
30
45 | 1,127
1,151
1,176
1,200 | 2,252
2,300
2,348
2,397 | 3,377
3,449
3,522
3,594 | 4,503
4,600
4,696
4,793 | 5,631
5,751
5,872
5,993 | 6,759
6,904
7,048
7,194 | 7,839
8,058
8,227
8,396 | 9,019
9,212
9,405
9,599 | | | | 13°00′
15
30
45 | 1,224
1,248
1,273
1,297 | 2,445
2,494
2,542
2,591 | 3,667
3,740
3,813
3,886 | 4,890
4,987
5,084
5,182 | 6,114
6,235
6,857
6,479 | 7,339
7,485
7,631
7,777 | 8,566
8,736
8,906
9,077 | | | | | 14°00′
15
30
45 | 1,321
1,346
1,371
1,395 | 2,640
2,689
2,738
2,787 | 3,959
4,033
4,107
4,180 | 5,280
5,378
5,476
5,574 | 6,601
6,724
6,847
6,970 | 7,924
8,071
8,218
8,366 | | | | | | 15°00′
15
30
45 | 1,420
1,444
1,469
1,494 | 2,837
2,886
2,935
2,985 | 4, 254
4, 327
4, 402
4, 477 | 5,673
5,771
5,870
5,970 | 7,093
7,216
7,339
7,463 | | | | | | This table is corrected for earth curvature, refraction, and the height of the instrument used at the station $(4\frac{1}{2}$ feet). 23682°-12-4 ### ELEVATIONS FROM VERTICAL ANGLES. When the distance to a mountain or other object is known its elevation above the surveyor may be determined. A vertical angle is measured with a clinometer or clinometer-compass, and the difference in elevation can be determined from the table. Information of this character assists greatly in the preparation of a map, and this method should be used when a peak is inaccessible or not likely to be occupied during the present survey. If both the distance and elevation of a peak are known, and the surveyor desires the elevation of the station which he is then occupying, this process is easily reversed. The table is prepared to miles of distance, and if intermediate fractional miles are needed the ratio may be interpolated. The method of determining the distance of a peak or other salient topographic point is illustrated in the various plane-table methods. If compass sights are taken from two or more known points the intersections may be platted with a protractor or computed.¹ Then: $\frac{\text{Distance } AB \times \text{sine of angle } B}{\text{Sine of angle } C} = \text{distance } AC$ Or: $\frac{\text{Distance } AB \times \text{sine of angle } A}{\text{Sine of angle } C} = \text{distance } BC$ The traverse table, distance 1, being the same as a table of natural cosines and sines, may be used to change a slope measurement to a horizontal measurement, and also get the difference in elevation. Thus a distance of 10.00 chains up or down a 7° slope would represent 9.92 chains on the level, and 1.22 chains rise or fall. The same method is used in reducing stadia measurements. $^{^{1}}$ The following is the method of computing the sides of a triangle when two angles and one side are known: The angle opposite the known side is equal to 180° minus the sum of the two known angles. The sine of an angle is the same as its departure (in the traverse table) for distance 1. \boldsymbol{A} and \boldsymbol{B} represent the two known angles and their distance apart; \boldsymbol{C} is the opposite angle: ### TYING IN. It is frequently necessary to make surveys of ranger stations or for timber sales in areas which have not been previously surveyed or mapped. It is imperative that some connection should be surveyed between the nearest or most convenient established point and the initial point of the survey which is to be made. Otherwise the survey will not determine the location of the area under consideration. The nature of the country and the distance necessary to be run will suggest which of the following methods may be employed: (1) Measure a line north, south, east, or west to intersect a Government survey line. Then tie to the nearest corner, quarter corner, meander corner, milepost, grant corner, or other point which is of official record. (2) Or run a traverse (meander) over a road, trail, open or easy country to such points. (3) Or if no land office surveys have been made nearer than, say, 5 miles, but there is a Geological Survey sheet, then tie to a bench mark, triangulation station, forks of a road, forks of a stream which has not changed its bed, or a house which is shown on the sheet. Accompany your report with a tracing or description which will show unmistakably the point used. If you tie to a mineral monument or to some corner of a patented mining claim, give a clear description. (4.) Or if no official surveys have been made within practicable distance, proceed as follows: Establish and witness a permanent monument, marked F S M. This may be at the initial point of your survey. From this point run a traverse to some outlook where compass or plane-table bearings may be taken on a number of peaks or other definite landmarks which may be visible. Give their estimated distances. State approximately what unsurveyed section the land would be in, or its latitude and longitude. The map accompanying such a survey should show any divide, stream, or trail in the immediate vicinity, and particularly the name of the watershed. # RANGER STATION SURVEYS. When the lands have been surveyed by the General Land Office and the corners can be located, the plat only need be submitted, showing the subdivisions desired for a ranger station. Where lots occur their numbers should be shown on the plat. No other description is necessary. The determination of the correct subdivisions must not be left to conjecture. The land office corners should be located and the necessary lines carefully run in every case when there is the least doubt as to what forties or tens should be recommended for withdrawal. When the lands are unsurveyed, or the corners of the Government survey can not be located, the actual boundary lines must be surveyed and marked, and field notes, description, and a plat must be prepared, all in accordance with the following instructions: Three kinds of permanent points of identification will be established-Forest Service Monuments, to which the ranger station surveys, and possibly future homestead or timber surveys, will be tied by bearing and distance; corners, which will be set up at each angle in the boundary; and witnesses, to which, whenever possible, each monument and corner will be tied. Forest Service Monuments.—The object of these monuments is explained under the subject "Tying in." They will be similar to the mineral monuments of a mining district. They should, if possible, be immovable and durable, and easy to locate at any future time from the field notes of the survey. A large bowlder or a built-up stone monument will serve the purpose, or a sound tree of long-lived species. Where there are no trees a wooden post may be used. Monuments will be marked F S M The witnesses for a monument should be permanent objects from which at least two cross bearings can be taken to locate the monument in the future if necessary. They will be $\begin{array}{c} \operatorname{marked} \ {\overset{M}{\mathsf{W}}} \end{array}$ At each angle in the boundary of a ranger station a durable corner will be established similar to those of the land-office surveys. Each corner post or stone will be marked near its top with the letter R and below this the number of the angle at which the corner is set, beginning with the initial post as number 1 and counting on in regular sequence around the boundary in the direction of the survey. Thus the monu- ment of the third corner will be marked $^{R}_{3}$ At least two witnesses will be made near each corner, and will be marked with the letter W and the number of the corner, thus: If the monument is established at the initial point of a survey, and is therefore also corner number 1, it will bear both monument and corner markings, thus: $F \mathrel{S} \mathrel{M} \mathrel{\stackrel{R}{1}}$ The witnesses will then bear the letters $\mathrel{M} \mathrel{W}$ The surveyor will depend largely on his common sense and skill in selecting trees or prominent rocks in the best positions for witnesses. Frequently the corners can be established near good witnesses without diminishing the value of the station. Usually the witnesses should not be more than 3 chains from a corner—the nearer the better, but they should be inside the boundary if possible. Where the boundary line of the ranger station passes through timber, the line should be plainly blazed in the manner described on page 41. with the figure 1 beneath, thus: W The instructions regarding field notes (p. 44) must be followed. A good form for keeping them is here shown: ### SPECIMEN NOTES. National Forest. WILDCAT RANGER STATION. T. 25 N., R. 8 E., Section, Meridian. Number List Area, 33.63 acres. June 15, 1912. Weather cloudy. Variation.—This survey was made with a Forest Service standard compass. Variation, 11° 30′ E., was obtained by retracement of east line of Section 36, T. 25 N., R. 7 E. The local land office recommends using a variation of 11° to 11° 40′ in this vicinity. Forest Service Monument.—Consists of a bowlder $7'\times 6'\times 3'$ above ground, situated on the left bank of Wildcat Creek, 7 chains downstream from the juncture of the north and east forks, 70 links from the water's edge, at right angles to the stream. FSM cut on the Fig. 11.—Ranger station plat. highest point of the rock, whence a yellow pine 16 inches in diameter bears N. 16° E., 73 links distant, marked $_{\rm W}^{\rm M}$ in blaze. Lyon Mountain bears S. 31° 30′ W. Tiger Mountain bears N. 28° 30′ W. Rock ledge bears S. 54° W., 47 links distant, marked $_{\rm W}^{\rm M}$ # 56 INSTRUCTIONS FOR MAKING FOREST SURVEYS, ETC. Beginning at corner No. 1, a limestone 30" \times 9" \times 5" set in mound of stones and chiseled ${R
\atop 1}$ Forest Service Monument above described bears S. 13° W., 252 links distant. The SW. corner of the ranger's cabin, built in 1905, bears N. 18° E., 180 links distant. A yellow pine, 12 inches diameter, bears east, 298 links distant marked W ### Thence N. 58° E. 1.20 chs. road, N. and S. 12.40 ravine, course NW. 17.80 leaning scrubby pinon 16 inches diameter. 25.00 enter scattering juniper and pinon. 26.50 East Fork Wildcat Creek flows N. 89° W. 35.00 corner No. 2, a juniper post $5' \times 4'' \times 4''$ in mound of gravel and earth, at foot of slope, marked $\begin{array}{c} R \\ 2 \end{array}$ A pinon, 8 inches diameter, bears north 10 links distant, marked W A granite bowlder, 4 feet in diameter and 3 feet above ground, bears S. 82° E., 223 links distant, marked W # Thence N. 15° W. 2.00 ascend slope, through small scrubby pinon. 10.00 corner No. 3, a limestone $3'' \times 7'' \times 26''$ in mound of stone, marked $\frac{R}{3}$ on SW. slope of a hill, about 150 feet above the ranger cabin. Chimney of cabin bears S. 45° 30' W. No suitable witness objects within 3.00 chains. ### Thence S. 58° W. (There is evidently local attraction at this point, since my backsight reading is S. 14° E. The compass needle therefore reads S. 59° W. on this course.) Running down slope. 12.60 ravine, course south. 26.80 foot of slope. Leave pinon, enter willows and cottonwood. 28.53 cross north fork of Wildcat Creek, flows S. 18° E. 29.00 enter open yellow pine timber. 35.00 corner No. 4. A stake of pine heartwood in mound of earth, marked R 4 A yellow pine, 2 feet in diameter, bears N. 14° E., 18 links distant, marked W/4 A fir, 12 inches diameter, standing on right bank of north fork of Wildcat Creek, bears S. 42° 30′ E., 134 links distant, marked W 4 (As my backsight reading is now N. 58° E., I conclude that there is no local attraction at this point.) # Thence S. 15° E. through open pine timber. 2.96 pine tree 2½ feet in diameter. 5.00 leave pine timber. 7.24 cross Wildcat Creek flows S. 23° W. 10.09 corner No. 1, the place of beginning, containing 33.63 acres of land, be the same more or less. JOHN R. UNDERWOOD, Ranger Surveyor. Field notes and plat compared and approved by— GEORGE A. OVERMAN, Supervisor. # FOREST HOMESTEAD SURVEYS. These surveys will be made in the same manner as those for ranger stations, but to avoid some confusion and to distinguish them the following system of marks should be used: Forest Service monuments, which are established for homestead surveys, will be marked F S M H Witnesses for these monuments will be marked M H Corners will be marked with H and the number of the corner, thus: H and a witness to the same corner will be H W When a monument is also the initial point of the survey, and is therefore also corner number 1 it will bear both marks, thus: F S M H If a F S M is subsequently used as a tie for a forest homestead survey its original marks will not be changed. In like manner a F S M H may be used as a tie for a ranger station or other subsequent survey without changing the original marks. The field notes will, of course, show unmistakably what tie was used. The type of cover of the land must be clearly shown on the map accompanying the reports. For this purpose Forest Atlas Legend crayons or color tints will be used The establishment of corners will not be required where it can be conclusively shown in a written report that listing of the land should be denied. The surveyor should be thoroughly familiar with the instructions under the act of June 11, 1906. Attention is also called to the circular of the General Land Office, September 7, 1906, "Regulations Governing Entries within Forest Reserves." A cooperative agreement between the Departments of the Interior and Agriculture, dated September 19, 1911, to avoid duplication or unnecessary work in surveying forest homestead claims, provides that instead of two surveys, as heretofore required, there shall be but one survey, and that it may be made by a forest officer, designated by and acting under the direction of the surveyor general, "who will exercise supervision in every case as to the manner of the execution of the survey with reference to the running of lines and the establishment of monuments to mark the same." Such surveys are for the approval of the surveyor general and acceptance by the General Land Office. The instructions of the surveyor general will be followed in these cases, even though they conflict entirely or in part with the methods of the Forest Service. # TRAIL SURVEYS. In surveying for railways, roads, or trails, the vertical deflection of the line is always expressed in per cent. Thus, a 5 per cent grade means a rise of 5 feet in 100 feet of horizontal distance. The horizontal deflection of the line is always expressed in degrees. Thus, a railway may have a 3° curve, which is a horizontal deflection of 3° in 100 feet, from chord to chord, or a road may have a change in direction of 3° at the junction of two courses. Percentage of grade and degrees of azimuth should never be confounded, as very serious errors will result. The terms are never interchangeable. The most important thing about a trail is its grade. Any other feature of its construction may be improved from month to month or from year to year, but if the grade is not properly established it must in time be abandoned. Thus, not only may time and money be wasted, but the trail, while in use, would be unsatisfactory. On the other hand, if the grade is properly located, the trail will be useful as soon as it is passable. The best gradient between any two points is upon a line which would have the same percentage of rise from beginning to end. Often there are "salient points" along the route, above or below which the grade must run, and we must then think of the line as divided into parts, each with its own percentage of rise between these salient points. If an even gradient is also a low gradient, it is unquestionably the proper location for the trail if construction is practicable. The same is true if the gradient is on the most direct and practical route and is below the maximum for trails. Reverse grades should be avoided if possible. This means that we should never go downhill when the object is to go uphill, as this obviously increases the elevation to be climbed, and therefore increases the grade upon the ascending portions of the trail. There are three maxima grades for trail construction. These are: 6 per cent, 12 per cent, and 18 cer cent. Being multiples of 6, these are easy to remember, as are also the reasons for having several maxima. A good grade, having a maximum of 6 per cent, may later be developed into a first-class road or turnpike. Such a grade might be called, for convenience, a turnpike grade. The surveyor should try his very best to get the trail upon a turnpike grade, but if this is obviously impracticable, he should keep the grade as low as possible, and not exceed 12 per cent. This is the limit for safe mountain roads such as are used for freighting, and might properly be called a freight grade. When trails must be constructed upon grades steeper than this, or to places which roads can not reach for many years, it is simply a case of making the best location the circumstances permit. However, there is still the final limit which should not be exceeded. This is the trail grade of 18 per cent, and is as steep as a loaded pack animal can ascend without violent and exhaustive effort. Long steep grades should have breaks at intervals where animals may rest and recover. In deciding on a route or location, the following points should be considered. - (1) A south exposure has less snow, is dryer, often more open, and has an increased fire hazard. - (2) Slide rock and other unstable material make a temporary or dangerous tread. - (3) Steep side hills, near the angle of repose, are liable to landslides or snowslides. - (4) Bridges and temporary structures should be avoided as far as possible. - (5) The permanence of a trail depends on the material and its drainage. It will be seen from the above that the location of a trail grade is almost wholly a matter of experience and good judgment. The aneroid barometer is often used to determine the distance in elevation between the ends of the proposed trail, and the approximate distance may be determined by pacing. This furnishes a preliminary reconnaissance. A "trial" or "random" line may then be run from one end of the proposed line to the other on the approximate average grade, which has been determined by reconnaissance. This may be done by a grademeter, an Abney level, or a Locke level. The grademeter is used as described on page 29. As the circular pendulum is graduated to tangents it may be used to line in the grade to any desired per cent, either uphill or downhill. It is unnecessary to consider the matter of distance, because grade, as thus meas- ured, is an absolute quantity in itself. The Abney level is used in a similar manner, but it contains no swinging pendulum, and must be set to the desired grade before the sight is taken to the instrument. Some of the Abney levels are graduated to degrees; others to degrees and slopes, in the proportion of 1:1 and 1:10; others have graduations for per cent. This has led to some confusion, and some bad construction has resulted. Care should be used to apply only the per cent when this instrument is in use on trails. The Locke level is a simple hand level which does not sight either uphill or downhill; it is used by sending an assistant ahead with a pole, upon which sights are taken through the barrel of the level. Allowance must be made for the height of the surveyor's eye above the ground. Thus, if his eye is 5 feet above the ground he can fix the location of a 5 per cent grade by working uphill and taking a sight on the ground at a point 100 feet distant, or by sighting downhill at the top of a pole which is 10 feet high and 100 feet distant.
For running different gradients, of course the height of the surveyor's eye remains the same, and the length of the sight is changed according to the grade. Thus, a sight on a 10-foot pole, looking downhill, in a distance of 50 feet, would give a 10 per cent grade; and a sight, uphill, on the ground at a distance of 50 feet, would give a 10 per cent grade, still assuming the height of the surveyor's eye to be 5 feet. In the same manner, if the sights, both uphill and downhill, were 200 feet, the grade would then be $2\frac{1}{2}$ per cent. The use of these instruments is to some extent a mat- ter of individual preference. In the large majority of cases the grade should be located by a downhill survey. This is always the case when a pass or saddle is the salient high point. When the grade connects two salient points the location may be run in either direction. The alignment of the trail, or its meanders, may be determined by a compass survey after the trail is constructed. It is a matter of secondary importance and should be given no consideration if it takes any time which might have been spent in getting the best possible grade. The importance of alignment should not be entirely overlooked, however, and where two or more routes would give equally satisfactory grades, then the one should be chosen which will have the most favorable alignment, together with shortness of distance, and which will require the least number of bridges and culverts, and in other respects afford the most favorable conditions for construction. # PLATTING THE SURVEY. When a plane table is used, the survey and platting progress together, but if other methods are used it is necessary to "plat" the notes. This should be done on the prescribed forms, using one of the standard scales which are described on page 66. Be sure that the plat shows the scale, as well as "what it is, where it is, who made it, and the date." If the plat does not "close." throw the error into the sides or angles which are most liable to be inaccurate on account of difficulties in the field work. If local attraction was encountered at one corner the error is likely to be in that angle. If offsets were made, or very rough or steep country traversed on one side, the mistake is probably in the chaining of that side. An error of one link to the chain is allowable. If a larger error appears in platting, the field work must be repeated. # MAP MAKING IN THE FIELD. After the salient points of the topography have been located by plane table, and the roads, streams, or summits have been traversed by compass surveys, it remains for the surveyor to sketch in the contours. Some of this may be done when the peaks are located and when the distances are chained, and the result is a skeleton map upon which it remains to fill in the balance by the eye. This is a matter of practice. It is an excellent plan to learn to read contour maps, such as are published by the Geological Survey, and the student should provide himself with a topographic sheet of some region with which he is well acquainted and learn to identify the relief with its contours. When this is mastered a good contour map will be almost as graphic as a miniature model of the country. In sketching contours it is of great assistance to imagine the sea level raised. Thus, if the 5,000-foot contour is being sketched, we may imagine that the salt waters of the earth are raised 5,000 feet higher than they now are. It is evident that the true contour would follow the shore line which is thus imagined and that bays and harbors, islands, straits, etc., would result. It is evident that contour lines can not cross each other or themselves and that they must connect somewhere, either on the map which is being prepared or in some other region. The contour map, when thus prepared, is only a base map for other data to be collected for the Forest Service. Some of this data may be collected as the survey proceeds, such as the classification of the land, timber, woodland, barren, etc., or the composition and stand of a forest. When the plane-table map is being made in the field, the paper is necessarily covered with pencil notes and lines which give the names of points, elevations, directions, etc. There is no need to encumber this map with other figures or names which may be confusing or lead to error. A better plan is to cover the map with a piece of tracing cloth, with the dull side up, which may be thumb-tacked along one side only, that it may hang back out of the way when work is being done on the base map. On this the burns, windfalls, barren areas, or stand may be sketched either in black or with colored crayons without smearing the base map or obliterating any of its topographic data. Some salient points on the base map should be copied on the tracing cloth so that the two may be registered at any time, for the paper may shrink or the cloth may stretch. # THE FOREST ATLAS. The Forest Atlas at Washington is the central depository for maps, diagrams, statistics, and history of the National Forests and forestry in general throughout the world. Its most important division is that of maps, and the most important maps are those of the National Forests. The Forest Atlas now comprises 190 volumes, containing sheets exactly 18 by 21 inches. They are bound in loose-leaf holders in two ways. Standard binders have the binding margin on the 21-inch side, while township binders have the binding margin on the 18-inch side. No map is made on a sheet less than 18 by 21 inches, and larger maps are made on two or more sheets which are always numbered from west to east beginning at the northwest corner. Borders are omitted. The title consists only of the name of the forest or the number of the township. The top of the map is always north. A binding edge of at least $1\frac{1}{2}$ inches is always left blank on the west or left-hand side of each sheet. The standard scale of the Forest Atlas is 1 inch to 1 mile, and the National Forests have been practically covered by atlas sheets according to this standard. Whenever, in special cases, a larger or smaller scale is necessary for the preparation of any map in the Forest Service, it must sustain the simple relation of \times 2 or \div 2. Thus the scale may be 2 inches, 4 inches, or 8 inches to 1 mile; or $\frac{1}{2}$ inch, $\frac{1}{4}$ inch, or $\frac{1}{8}$ inch to 1 mile. Under no circumstances will sheets be prepared for the Forest Atlas on the ratio of 3, 5, 7, etc. The scale of township plats is 2 inches to 1 mile, because that scale was adopted by the General Land Office, from which the plats were procured. The Atlas sheets which cover a National Forest are called a *folio* and are assembled, with a *legend page*, in a paper *cover*, on which is printed an *index diagram* show- ing the number of the sheets. In the office of each district forester is a *District Atlas* consisting of 20 or more volumes, containing duplicate sheets of the Forest Atlas covering the area of the district. Whenever Forest Atlas folios have been duplicated by photolithography or otherwise for a National Forest, the officers have been supplied with copies, but under no circumstances are copies of any atlas folio to be sold or given away. They are strictly for the use of forest officers in the administration of the National Forests. Copies for distribution are not published. Forest Supervisors are supplied by the property clerk with binders for Forest Atlas folios, having the binding margin on the 21-inch side, and also with binders for Land Office township plats, having the binding margin on the 18-inch side. The folios are the "mother maps" which furnish the bases from which further map making will proceed in the Forest Service. They correspond to the mother maps of other countries in this respect—that they are compiled from official data upon a standard scale, 1 inch to 1 mile,¹ and upon a uniform legend. They are not always sufficiently accurate for forest work, and the sheets must, therefore, be corrected whenever new data have been obtained in the field. The manner of correcting sheets is shown on the ''dummy Atlas sheet,'' which has been issued to forest officers. The method is that used by printers in correcting proof. Bold lines should be drawn to the margin of the sheet and explanatory notes written clearly. Do not make neat corrections without the marginal note, or it will not be apparent that the sheet has been corrected. Do not write letters or memoranda telling how a sheet should be corrected. Do it yourself. Do not be afraid to mark up any sheet because it is beautifully engraved or colored. Your corrections will make it more valuable. New data obtained by reconnaissance is usually mapped on a scale of 2 inches or 4 inches to 1 mile. Such data should not be redrawn to the standard Atlas scale in the field. The reconnaissance tracings should be sent to Washington with a requisition, Form 988, for photoreduction. For this and other reasons reconnaissance tracings and other base maps should be drawn with black ink only, and should show only the drainage, contour, culture, and land lines. Other data, such as classification, forest or grazing types, or administration districts, can be shown by appropriate colors upon two or more prints. By this method the tracing remains a record which is subject to very little change, ¹ The mother maps of Great Britain and India are on the same scale as the Forest Atlas standard. Those of France, Spain, Italy, Switzerland, and Sweden are nearly the same, 1½ inches to the mile. Those of Bosnia, Herzegovina, Norway, Bulgaria, Hungary, Russia, and Portugal are on smaller scales; those of Germany, Belgium, Denmark, and the Netherlands are on larger scales. #### CONVENTIONAL SIGNS ### LETTERING. # ABCDEFGHIJKLMNOPQRSTUVWXYZ abcdefghijklmnopqrstuvwxyz 123456789 (topography) UPPER CASE USED FOR TITLES MOUNTAIN RANGES, STATE NAMES, TOWNSHIP AND RANGE NUMBERS, GRANTS, AND
RESERVATIONS, ALPHANUMERIC SYMBOLS. Upper and Lower Case for Peaks, Valleys, Islands, Capes, etc., Meridians and Parallels, Legends and Scales. # A B C D E F G H I J K L M N O P Q R S T U V W X Y Z abcdefghijk l m n o p q r s t u v w x y z 1 2 3 4 5 6 7 8 9 (culture) UPPER CASE FOR RAILROADS, ROADS, TELEPHONE LINES, AND OTHER MEANS OF COMMUNICATION. Upper and Lower Case for Other Culture. # ABCDEFGHIJKLMNOPQRSTUVWXYZ abcdefghijklmnopqrstuvwxyz 123456789 (settlement) UPPER CASE FOR CITIES, STATE, AND COUNTY BOUNDARIES. Upper and Lower Case for Towns, Villages, Post Offices. ## ABCDEFGHIJKLMNOPQRSTUVWXYZ abcdefghijklmnopqrstuvwxyz 123456789 (water) UPPER CASE FOR OCEANS, LARGE RIVERS, LAKES, ETC. Upper and Lower Case for Small Rivers, Creeks, Springs, Marshes, Glaciers, Canals, Ditches, etc. and is not obscured by data which is of special rather than general value. The first reconnaissance of any area should include the drainage and contour, otherwise it will not be possible to "register" a second or supplemental reconnaissance with it. General maps, showing an entire Forest or region are compiled at Washington from data on the corrected Atlas sheets, and are issued for the use of forest officers. The usual process is photolithography. Every request for the issuance of a map should be submitted to the Forester with a recommendation regarding the data to be shown or omitted, scale, kind of paper, and number of copies required. Any project for the issuance of a "three-color map" with blue drainage, brown contours, and black culture should be taken up by correspondence with the Forester before the final tracings are prepared, in order that the manuscript may be in good shape for the engraver. The Forest Atlas legend page, which has been supplied to all forest officers, shows the standard scheme of colors and symbols which are used in the preparation of all atlas sheets. It should be borne in mind that National Forests are established in widely different regions; as far north as Alaska and as far south as Florida and Porto Rico. On no two forests will the data suggested on the legend page be of equal importance, and it may be necessary or convenient to adopt additional symbols or colors to show unusual conditions. This is quite permissible providing the marginal notes are made explanatory or if the sheet is subject to only one interpretation by forest officers who will have to use it. An atlas sheet or any other map should show plainly the information it is intended to convey, and artistic flourishes, fancy type, or border designs are useless. It should show what it is, where it is, the scale, who made it, and the date. It should show also by whom the field examination or survey was made and the date of the same. If it is from an original survey the magnetic variation should be given. On the borders of the map, if the area shown covers more than one township, the township and range numbers should be given, and also, if possible, one or more meridians and parallels. If a degree meridian does not fall in the map, then some intermediate may be given, such as 10' or 20'. Table 7 will be found convenient. Table 7.—Lengths of degrees on meridians and parallels at different latitudes on the earth. | At lati-
tude— | Length of 1° on meridians. | Length of 1° on parallels. | Convergence in
one township
or in two
meridians 6
miles long and
6 miles apart. | |-------------------|----------------------------|----------------------------|--| | | Miles. | Miles. | Links. | | 26° | 68.84 | 62.21 | 35.4 | | 27 | 68.85 | 61.68 | 37.0 | | 28 | 68.86 | 61.12 | 38.6 | | 29 | 68.87 | 60.55 | 40.2 | | 30 | 68.88 | 59.96 | 41.9 | | 31 | 68.89 | 59.34 | 43.6 | | 32 | 68.90 | 58.72 | 45.4 | | 33 | 68.91 | 58.07 | 47.2 | | 34 | 68.92 | 57.41 | 49.1 | | 35 | 68.93 | 56.72 | 50.9 | | 36 | 68.95 | 56.03 | 52.7 | | 37 | 68.96 | 55.31 | 54.7 | | 38 | 68.97 | 54.58 | 56.8 | | 39 | 68.98 | 53.83 | 58.8 | | 40 | 68.99 | 53.06 | 60.9 | | 41 | 69.01 | 52.28 | 63.1 | | 42 | 69.02 | 51.48 | 65.4 | | 43 | 69.03 | 50.67 | 67.7 | | 44 | 69.04 | 49.84 | 70.1 | | 45 | 69.05 | 49.00 | 72.6 | | 46 | 69.07 | 48.14 | 75.2 | | 47 | 69.08 | 47.26 | 77.8 | | 48 | 69.09 | 46.37 | 80.6 | | 49 | 69.10 | 45.47 | 83.5 | The atlas sheets show the alienation of lands within National Forests, but it must be understood that data of this kind can not be accepted as final authority, but may be regarded as presumptive evidence. It has required three years to collect the alienation data for the National Forests, and since their status changes from day to day, while the compilation and publication of atlas sheets requires several months, it is evident that a folio can not be issued to forest officers which will be up to date in this respect. It is only by keeping new data posted on the sheets that the office record can be kept up to date. Maps are never perfect, nor do they approach perfection unless repeatedly altered and corrected in accordance with dicoveries or changed conditions. Although the Forest Atlas sheets are compiled in every case from the best data available, they are often far below the standard which should obtain in forest maps. It will not be regarded as a reflection upon the compiler of a sheet if a large number of corrections are found necessary, and field officers should never hesitate, for this reason, about sending in data. The coloring tints which are used in the classification scheme may be prepared as follows from standard inks that will be furnished by the property clerk at Ogden, upon requisition: #### Forest Atlas-Color prescriptions. #### Timberland: | Less than 2,000 board feet per acre— | Parts. | |--------------------------------------|--------| | Green ink | 2 | | Yellow ink | 1 | | Water | 2 | ### 74 INSTRUCTIONS FOR MAKING FOREST SURVEYS, ETC. | Timberland—Continued. | | |--|--------| | 2,000 to 5,000 board feet per acre— | Parts. | | Green ink. | 1 | | Water | 3 | | 5,000 to 10,000 board feet per acre—green ink. | | | 10,000 to 25,000 board feet per acre— | | | Brown ink | 3 | | Green ink. | 3 | | Yellow ink. | 2 | | 25,000 to 50,000 board feet per acre— | | | Brown ink | 4 | | Green ink. | 2 | | Yellow ink. | 1 | | Water | 7 | | Woodland, cordwood, etc.: | | | Green ink | 1 | | Yellow ink. | 2 | | Water | 8 | | Chaparral or brush: | | | Brown ink. | 1 | | Water | 5 | | Sagebrush: | | | Brown ink. | 3 | | Yellow ink | 2 | | Orange ink. | 2 | | Water | 10 | | Grassland, parks, etc.: | | | Yellow ink | 1 | | Water | | | Barren land: | | | Black ink | . 1 | | Water | 20 | | Burn, forest cover established: | | | Green ink. | . 1 | | Yellow ink | . 2 | | | 0 | | Old cuttings: | Parts. | |----------------------------------|--------| | Brick-red ink | . 1 | | Water | . 3 | | Cultivated—red ink. | | | Mineral lands—orange ink. | | | Open for cattle and horses only: | | | Brick-red ink | . 1 | | Water | . 3 | | Open for sheep and goats only: | | | Yellow ink | . 1 | | Water | . 1 | | Closed for all stock—orange ink. | | | Driveways for stock: | | | Black ink | . 1 | | Water | . 20 | When timber or woodland has been partly burned, the lining for burns may be used on top of the green. When partly cut over, or culled, the proper signs may be used in the same manner. #### FOREST ATLAS CRAYONS. In order to secure uniformity in coloring field maps, boxes containing 12 crayons are furnished, with a descriptive label, for use with the Forest Atlas legend. They are as follows: #### COLORED CRAYONS. #### General classification. 69. Less than 2,000 B. F. 29. 2,000 to 5,000 B. F. (light). 29. 5,000 to 10,000 B. F. (heavy). 15. 10,000 to 25,000 B. F. (light). 15. 10,000 to 25,000 B. F. (light). 15. 25,000 to 50,000 B. F. (heavy). 63. Woodland, cordwood, poles, etc. 87. Chaparral or brush. 37. Sagebrush. 2. Grassland, parks. 6609. Barren, above timber line, etc. 63. Burn, forest cover established. 72. Old cuttings. 46. Cultivated. 62. Mineral. 58. Water. #### Grazing map legend. - 58. Administrative divisions.72. Open for cattle and horses only. - 2. Open for sheep and goats only. - 62. Closed for all stock.87. Driveways for stock. The property clerk has installed a machine for printing the Forest Atlas legend upon each colored crayon, and it is expected that this improved method of marking will lead to greater accuracy in the use of colors on maps. There have always been some uncertainties. due to the fact that many men are not good judges of color, and also because the makers of colored cravons change the formulæ for mixing colors or use different grades of pigment. It has also been found in the case of some colors that they change materially with age. Under this new method of marking it will be possible for the property clerk to obtain in each case the best grade of a standard color, and, disregarding the manufacturer's number, print the atlas legend upon the pencil. Thus, the bright yellow crayon will be marked "Grassland, parks, etc.," and "Open for sheep and goats only." On important work a legend showing the colors and symbols used and their significance should accompany each map or folio. #### MOUNTING MAPS ON MUSLIN. Slightly dampen the muslin and stretch it over a table top or other flat surface. Fasten with tacks not more than 4 inches apart. Wet the map thoroughly by dipping it in water or with a sponge. Remove surplus water with large blotters. Lay the map face down upon the muslin, and with a wide flat brush (rubber bound) apply paste quickly but evenly over the back of the map. Turn over the map and press it smoothly upon the muslin, using a blotter and roller. Leave it to dry overnight. The hands should be wet when handling a wet map and the surface of the map should be rubbed as little as possible. It is better for two persons to work together, holding all four corners of the map and allowing
it to fall upon the muslin from the center toward the corners, thus avoiding air bubbles. If any paste gets upon the face of the map it should be immediately removed with a wet sponge. Three or four layers of maps may be mounted on the same board, provided a dry piece of muslin (same size as map) be placed between the layers. In some instances, for convenience in folding to pocket or other small size, the map should be cut into sections, all of the same size and shape, and mounted with a slight break between each section, where the fold will come. In this case, each small sheet must be placed separately upon the big sheet of muslin, which has been previously dampened slightly. One gallon of paste may be made as follows: Dissolve 1½ pounds of lump starch in 1 gallon of water. Then stir constantly while pouring boiling water over it until the mixture becomes thick. Set aside, and when almost cold squeeze through a piece of cheesecloth in order to remove the lumps. #### METHOD OF USING THE FOREST SERVICE STANDARD PLANIMETER. Planimeters are issued to some forest officers and are used to determine areas platted on maps. They are constructed to register areas in square inches and deci- Fig. 12.—Standard planimeter. mals of 1 square inch and are used in the following manner: (1) Place the weighted stationary pin, A, figure 12, outside of the area to be determined, below and to the left, in a position which will permit the "tracing pin," B, to follow the entire outline freely. If the area to be determined is too large to permit placing the stationary pin outside, and thus determining the area as a whole, the area may be divided and its parts deter- mined separately. (2) Place the tracing pin at any starting point on the outline of the area and press it in to make a distinct mark on the surface. Set all the scales at zero with the hand. Then draw the tracing pin around the outline of the area, following it as exactly as possible, until the circuit is completed and the tracing pin rests at the starting point. The circuit must be made in the same direction that the hands of a watch move. (3) Four figures, representing tens, units, tenths, and hundredths, may be read after the circuit is completed, and the reading may be from 00.01 to 99.99. Figure 12 shows a sample reading of 25.71 square inches because the dial C registers 10 square inches for each numbered division. The roller D registers 1 square inch for each numbered division. The vernier E registers 1 square inch for each numbered division. ters 0.01 square inch to be read against D. It will be noted that the pointer at dial C points between 2 and 3. The area in square inches is, therefore, between 20 and 30. The zero on the vernier E serves as a pointer for the roller D. This reads between 5 and 6. Therefore the integral area is 25. Counting the divisions between the figures 5 and 6, it is seen that the zero on the vernier barely passes the seventh mark. Therefore the first decimal is 0.7. By looking along the vernier E it will be seen that one of the graduations falls exactly opposite one of those on roller D. This will happen in every case and the number of this mark on the vernier will determine the second decimal. In the diagram the first mark to the right of the zero falls opposite a mark on roller D and therefore the reading is 0.01. Thus the total reading is 25.71 square inches. Use a magnifying glass if necessary. (4) The area in acres is found by multiplying the figure given by the planimeter by coefficient determined by the scale on which the map is drawn. If the scale be 1 inch to the mile, 1 square inch will represent 640 acres. If it be one-half inch to the mile, 1 square inch will represent 4 square miles and the acreage will be determined by multiplying the instrument reading by 640×4, or by 2,560. If the scale be 2 inches to the mile, 1 square inch will represent 160 acres; and so on for any desired scale. (5) Blueprints and other photographic papers are never exactly to scale, but a conventional mile on the print can be planimetered, and the reading thus obtained will be known to represent 640 acres. (6) On important work the area should be planimetered several times and the results averaged. (7) For practice, a regular figure, such as a square containing a known number of square inches, should be planimetered until the reading on the instrument agrees substantially with the known area. (8) Only an expert should attempt to adjust a planimeter. If the instrument does not work properly it should be returned to the property clerk for repairs. #### LAND OFFICE SURVEYS. The rectangular surveys of the United States Land Office control throughout the West and divide the land Fig. 13.—Rectangular system of Land Office surveys. surfaces into squares, which may be divided and subdivided, quartered, quarter-quartered, etc. The unitof the system is the township, which is, conventionally, 6 miles square and contains 36 sections of 640 acres each, or 23,040 acres. Inasmuch as meridian lines converge toward the North Pole, it is evident that townships will have a trapezoidal form and that they will materially decrease in area toward the north unless correction lines are introduced. The system is as follows (see fig. 13, p. 81): Beginning at the initial points, a base line is run due east and west with standard parallels 24 miles distant. From these parallels guide meridians, 24 miles distant, are run due north and "close" on the standard parallels. This divides the region into tracts 24 miles square, except for the convergence mentioned. Then township lines are run, making tracts which are 6 miles square. These are afterwards "subdivided" into sections. The conventional section is legally subdivided into quarters and quarter-quarters, and by common usage into smaller subdivisions, but unless otherwise specified these are all proportionate areas to the quarter section. A conventional section is cut into quarters by straight lines which connect the quarter corners on its boundaries. Whenever, as in the case of timber sales, it becomes necessary to survey and mark a line which bounds some alienation, it is important that the line should be either legally correct or should be agreed to in writing by the private owner for the purpose of the sale, and in case of a disagreement no timber should be marked for cutting in the disputed strip until the merits of the case have been submitted to the Forester and his instructions received. There are many exceptions to the simple rectangular scheme as outlined above, and many different anomalous townships and sections result from methods which have to be employed in special cases. #### RESURVEYS. When a survey is to be made in a township which has been subdivided, or when the lines of old survey boundaries are to be retraced, the prime object is to *follow* all of the legal lines and to check up on all of the legal corners. For this purpose the surveyor should know: - (1) The date when the original survey was made. - (2) The variation used. - (3) The change in variation, increase or decrease, since the original survey was made. In any Western State this information may be obtained from the surveyor general, and usually from the county surveyor of the county in which the survey is to be made. In any event the new variation, as determined by the resurvey, should be entered in the field notes for future reference. ## CANCELLATION OF MISLEADING MARKS ON FORMER FOREST BOUNDARY POSTS. Forest officers are cautioned that the agreement between the General Land Office and the Forest Service in regard to the cancellation of certain misleading markings on National Forest boundary posts does not extend to any of the existing regulations against changing the markings on any posts other than as herein specified Owing to changes in some National Forests many of the metal posts used to mark the boundaries, as surveyed by the Geological Survey and approved by the General Land Office, have become misleading. As these posts usually mark section corners, and also furnish valuable points for reference, they must not be removed, but their misleading marks may be canceled. This will be done by cutting, with a sharp cold chisel, a line through any misleading word or words, the intention being to cancel them without rendering them illegible. On no account shall any portion of the markings which are still true, or partly true, be thus canceled. For example, in the following cases, the words which, in a National Forest, may be canceled are shown. # AQUARIUS FOREST RESERVE Loundary Post No. 27, Black Hills Boundary Post No. 18. United States forest reserve <u>San Jacinto Boundary</u> Post No. 43. Outside of a National Forest the words which, for example, may be canceled are shown thus: #### UNITED STATES FOREST RESERVE MADISON BOUNDARY POST NO. 37. In every case when any mark on a post is canceled the same cancellation must be made on the bearing trees if their marks are misleading, by cutting a groove across the word. A report must be made to the Forester giving the location and number of each post canceled and stating which of the markings thereon have been canceled. Fig. 14.-Names of physiographic features. ADDITIONAL COPIES of this publication may be procured from the SUPERINTENDENT OF DOCUMENTS, Government Printing Office, Washington, D. C., at 20 cents per copy. ## THIS BOOK IS DUE ON THE LAST DATE STAMPED BELOW #### AN INITIAL FINE OF 25 CENTS WILL BE ASSESSED FOR FAILURE TO RETURN THIS BOOK ON THE DATE DUE. THE PENALTY WILL INCREASE TO 50 CENTS ON THE FOURTH DAY AND TO \$1.00 ON THE SEVENTH DAY OVERDUE. | OVERDUE. | | | |-------------|--|--| | OCT 10 1933 | | | | | | | | APR 12 1938 |